Effector-triggered innate immunity contributes Arabidopsis resistance to Xanthomonas campestris

被引:21
|
作者
Rong, Wei [1 ,2 ,3 ]
Feng, Feng [4 ,5 ]
Zhou, Jianmin [3 ]
He, Chaozu [1 ]
机构
[1] Chinese Acad Sci, Inst Microbiol, State Key Lab Plant Genom, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Grad Sch, Beijing 100039, Peoples R China
[3] Natl Inst Biol Sci, Beijing 102206, Peoples R China
[4] Tsinghua Univ, Grad Sch Shenzhen, Beijing 100084, Peoples R China
[5] Tsinghua Univ, Sch Life Sci, Beijing 100084, Peoples R China
关键词
PV. TOMATO DC3000; DISEASE RESISTANCE; III EFFECTOR; MOLECULAR-PATTERNS; RAR1; DEFENSE; ELICITATION; PROTEIN; PATHOGENICITY; BACTERIA;
D O I
10.1111/j.1364-3703.2010.00642.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
P>Xanthomonas campestris pv. campestris, the causal agent of black rot disease, depends on its type III secretion system (TTSS) to infect cruciferous plants, including Brassica oleracea, B. napus and Arabidopsis. Previous studies on the Arabidopsis-Pseudomonas syringae model pathosystem have indicated that a major function of TTSS from virulent bacteria is to suppress host defences triggered by pathogen-associated molecular patterns. Similar analyses have not been made for the Arabidopsis-X. campestris pv. campestris pathosystem. In this study, we report that X. campestris pv. campestris strain 8004, which is modestly pathogenic on Arabidopsis, induces strong defence responses in Arabidopsis in a TTSS-dependent manner. Furthermore, the induction of defence responses and disease resistance to X. campestris pv. campestris strain 8004 requires NDR1 (NON-RACE-SPECIFIC DISEASE RESISTANCE1), RAR1 (required for Mla12 resistance) and SGT1b (suppressor of G2 allele of skp1), suggesting that effector-triggered immunity plays a large role in resistance to this strain. Consistent with this notion, AvrXccC, an X. campestris pv. campestris TTSS effector protein, induces PR1 expression and confers resistance in Arabidopsis in a RAR1- and SGT1b-dependent manner. In rar1 and sgt1b mutants, AvrXccC acts as a virulence factor, presumably because of impaired resistance gene function.
引用
收藏
页码:783 / 793
页数:11
相关论文
共 50 条
  • [21] Proteomics of effector-triggered immunity (ETI) in plants
    Hurley, Brenden
    Subramaniam, Rajagopal
    Guttman, David S.
    Desveaux, Darrell
    VIRULENCE, 2014, 5 (07) : 752 - 760
  • [22] Conservation of effector-triggered immunity in brassicaceous plants
    Breit-McNally, C.
    Desveaux, D.
    Guttman, D. S.
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2024, 37 (05) : 35 - 36
  • [23] Effector-triggered immunity and pathogen sensing in metazoans
    Natasha Lopes Fischer
    Nawar Naseer
    Sunny Shin
    Igor E. Brodsky
    Nature Microbiology, 2020, 5 : 14 - 26
  • [24] RhoGTPases - NODes for effector-triggered immunity in animals
    Stuart, Lynda M.
    Boyer, Laurent
    CELL RESEARCH, 2013, 23 (08) : 980 - 981
  • [25] Effector-triggered immunity in mammalian antiviral defense
    Orzalli, Megan H.
    Parameswaran, Pooja
    TRENDS IN IMMUNOLOGY, 2022, 43 (12) : 1006 - 1017
  • [26] RhoGTPases — NODes for effector-triggered immunity in animals
    Lynda M Stuart
    Laurent Boyer
    Cell Research, 2013, 23 : 980 - 981
  • [27] UnZIPping Mechanisms of Effector-Triggered Immunity in Animals
    Kleino, Anni
    Silverman, Neal
    CELL HOST & MICROBE, 2012, 11 (04) : 320 - 322
  • [28] Nuclear dynamics of Arabidopsis calcium-dependent protein kinases in effector-triggered immunity
    Gao, Xiquan
    He, Ping
    PLANT SIGNALING & BEHAVIOR, 2013, 8 (04) : e238681 - e238685
  • [29] Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis
    Nomura, Kinya
    Mecey, Christy
    Lee, Young-Nam
    Imboden, Lori Alice
    Chang, Jeff H.
    He, Sheng Yang
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (26) : 10774 - 10779
  • [30] Convergent and Divergent Signaling in PAMP-Triggered Immunity and Effector-Triggered Immunity
    Peng, Yujun
    van Wersch, Rowan
    Zhang, Yuelin
    MOLECULAR PLANT-MICROBE INTERACTIONS, 2018, 31 (04) : 403 - 409