Experimental study on all Yb-doped photonic crystal fiber

被引:1
|
作者
Fu, Jian [1 ]
Hou, Zhiyun [1 ]
Zhou, Guiyao [2 ]
Zhao, Jingde [1 ]
Zhang, Wei [1 ]
Xia, Changming [1 ]
Cang, Xuelong [1 ]
Liu, Jiantao [2 ]
机构
[1] South China Normal Univ, Guangzhou Key Lab Special Fiber Photon Devices &, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangzhou HuaRenYiHe Specialty Opt Fiber Technol, Guangzhou 510006, Guangdong, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Photonic crystal fiber; Fiber amplifier; Yb-doped; POWER; AMPLIFIER; LASER; INSTABILITY;
D O I
10.1117/12.2264091
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we demonstrated an experiment of the all Yb-doped photonic crystal fiber laser using free space optical paths method. The experimental setup of all Yb-doped photonic crystal fiber laser is composed of the seed laser and the amplifier. The laser gain medium of the seed laser and the amplifier are the same Yb-doped photonic crystal fibers that are fabricated by non-chemical vapor deposition (Non-CVD) technology. The seed laser cavity is a Fabry-Perot cavity. The amplifier is pumped by back-end method. They are coupled each other by lens and dichroic mirrors on the optical table. The experimental results have a good reference value for the photonic crystal fiber laser research in the future.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Polarizing 50μm core Yb-doped photonic bandgap fiber
    Kong, Fanting
    Gu, Guancheng
    Hawkins, Thomas W.
    Parsons, Joshua
    Jones, Maxwell
    Dunn, Christopher
    Kalichevsky-Dong, Monica T.
    Pulford, Benjamin
    Dajani, Iyad
    Saitoh, Kunimasa
    Palese, Stephen P.
    Cheung, Eric
    Dong, Liang
    FIBER LASERS XII: TECHNOLOGY, SYSTEMS, AND APPLICATIONS, 2015, 9344
  • [22] A theoretical and experimental study on all-normal-dispersion Yb-doped mode-locked fiber lasers
    池俊杰
    李平雪
    杨春
    赵自强
    李尧
    王雄飞
    钟国舜
    赵鸿
    姜东升
    Chinese Physics B, 2013, (04) : 268 - 273
  • [23] A theoretical and experimental study on all-normal-dispersion Yb-doped mode-locked fiber lasers
    Chi Jun-Jie
    Li Ping-Xue
    Yang Chun
    Zhao Zi-Qiang
    Li Yao
    Wang Xiong-Fei
    Zhong Guo-Shun
    Zhao Hong
    Jiang Dong-Sheng
    CHINESE PHYSICS B, 2013, 22 (04)
  • [24] \Large mode area Yb-doped photonic bandgap fiber lasers
    Dong, Liang
    Kong, Fanting
    Gu, Guancheng
    Hawkins, Thomas
    Parsons, Joshua
    Jones, Maxwell
    Dunn, Christopher
    Kalichevsky-Dong, Monica T.
    Saitoh, Kunimasa
    Pulford, Benjamin
    Dajani, Iyad
    FIBER LASERS XII: TECHNOLOGY, SYSTEMS, AND APPLICATIONS, 2015, 9344
  • [25] Yb-doped Polarizing Fiber
    Gillooly, A.
    Webb, A. S.
    Favero, F. C.
    Bouchan, T.
    Cooper, L. J.
    Read, D.
    Hill, M.
    OPTICAL COMPONENTS AND MATERIALS XIV, 2017, 10100
  • [26] Heavily Yb-doped phosphate large-mode area all-solid photonic crystal fiber operating at 990 nm
    Wang, Longfei
    He, Dongbing
    Feng, Suya
    Yu, Chunlei
    Hu, Lili
    Qiu, Jianrong
    Chen, Danping
    LASER PHYSICS LETTERS, 2015, 12 (07)
  • [27] Yb-Doped Photonic Bandgap Fiber Lasers with Record Core Diameter
    Gu, Guancheng
    Kong, Fanting
    Hawkins, Thomas
    Parsons, Joshua
    Jones, Maxwell
    Dunn, Christopher
    Kalichevsky-Dong, Monica T.
    Saitoh, Kunimasa
    Dung, Liang
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [28] Experimental study on 1137 nm long wavelength Yb-doped fiber lasers
    Zhang, Hanwei
    Zhou, Pu
    Wang, Xiaolin
    Xiao, Hu
    Xu, Xiaojun
    Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2013, 25 (11): : 2785 - 2787
  • [29] Single-polarization ultra-large-mode-area Yb-doped photonic crystal fiber
    Schmidt, O.
    Rothhardt, J.
    Eidam, T.
    Roeser, F.
    Limpert, J.
    Tuennermann, A.
    Hansen, K. P.
    Jakobsen, C.
    Broeng, J.
    OPTICS EXPRESS, 2008, 16 (06): : 3918 - 3923
  • [30] Sub-50 fs Yb-doped laser with anomalous-dispersion photonic crystal fiber
    Zhang, Zuxing
    Senel, C.
    Hamid, R.
    Ilday, F. O.
    OPTICS LETTERS, 2013, 38 (06) : 956 - 958