A primal-dual variant of the Iri-Imai algorithm for linear programming

被引:5
|
作者
Tütüncü, RH [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
关键词
interior point method; linear programming; potential reduction algorithm;
D O I
10.1287/moor.25.2.195.12221
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A local acceleration method for primal-dual potential-reduction algorithms is introduced. The method developed here uses modified Newton search directions to minimize the Tanabe-Todd-Ye (TTY) potential function, and can be regarded as a primal-dual variant df the Iri-Imai algorithm based on the multiplicative analogue of Karmarkar's potential function. When iterates are close to an optimal solution, the TTY potential function hits negative curvature along the generated search directions. Therefore, large reductions in the potential function can be obtained, guaranteeing polynomial and quadratic convergence to nondegenerate solutions.
引用
收藏
页码:195 / 213
页数:19
相关论文
共 50 条
  • [41] A PRIMAL-DUAL ALGORITHM FOR BSDES
    Bender, Christian
    Schweizer, Nikolaus
    Zhuo, Jia
    MATHEMATICAL FINANCE, 2017, 27 (03) : 866 - 901
  • [42] Analysis of linear structured systems using a primal-dual algorithm
    Hovelaque, V
    Commault, C
    Dion, JM
    SYSTEMS & CONTROL LETTERS, 1996, 27 (02) : 73 - 85
  • [43] Linear convergence of a primal-dual algorithm for distributed interval optimization
    Wang, Yinghui
    Wang, Jiuwei
    Song, Xiaobo
    Hu, Yanpeng
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (02): : 857 - 873
  • [44] On the geometry and refined rate of primal-dual hybrid gradient for linear programming
    Lu, Haihao
    Yang, Jinwen
    MATHEMATICAL PROGRAMMING, 2024,
  • [45] A feasible primal-dual interior point method for linear semidefinite programming
    Touil, Imene
    Benterki, Djamel
    Yassine, Adnan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2017, 312 : 216 - 230
  • [46] ON THE LINEAR CONVERGENCE OF THE GENERAL FIRST ORDER PRIMAL-DUAL ALGORITHM
    Wang, Kai
    Han, Deren
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2021, 18 (05) : 3749 - 3770
  • [47] Restless bandits, linear programming relaxations, and a primal-dual index heuristic
    Bertsimas, D
    Niño-Mora, J
    OPERATIONS RESEARCH, 2000, 48 (01) : 80 - 90
  • [48] Stability of the primal-dual partition in linear semi-infinite programming
    Ochoa, Pablo D.
    Vera de Serio, Virginia N.
    OPTIMIZATION, 2012, 61 (12) : 1449 - 1465
  • [49] Primal, dual and primal-dual partitions in continuous linear optimization
    Goberna, M. A.
    Todorov, M. I.
    OPTIMIZATION, 2007, 56 (5-6) : 617 - 628
  • [50] A stable primal-dual approach for linear programming under nondegeneracy assumptions
    Gonzalez-Lima, Maria
    Wei, Hua
    Wolkowicz, Henry
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2009, 44 (02) : 213 - 247