Design of microfluidic channels to prevent negative filtration in implantable hemofiltration devices

被引:0
|
作者
Kono, R. [1 ]
Ota, T. [1 ]
Ito, T. [1 ]
Miyaoka, Y. [2 ]
Ishibashi, H. [3 ]
Kanno, Y. [2 ]
Miki, N. [1 ]
机构
[1] Keio Univ, Dept Mech Engn, Yokohama, Kanagawa, Japan
[2] Tokyo Med Univ, Dept Nephrol, Shinjuku Ku, Tokyo, Japan
[3] Tokyo Med Univ, Clin Res Ctr, Shinjuku Ku, Tokyo, Japan
关键词
D O I
10.1109/EMBC46164.2021.9630070
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In order to improve the quality of life of dialysis patients, our group have been developing an implantable hemofiltration device (IHFD) composed of multiple layers of dialysis membranes and microfluidic channels. To improve the hemodialysis performance of IHFD, preventing the negative filtration, which is caused by the oncotic pressure of blood, is mandatory. In this study, we fabricated IHFDs with five different microchannel designs and experimentally investigated the performance of each device in in vitro experiment. In addition, the successful IHFD was further evaluated by ex vivo experiments with a beagle dog. The experiments verified the effectiveness of the microchannel design, which will be used for the IHFD for in vivo experiments with pigs in the future.
引用
收藏
页码:5051 / 5054
页数:4
相关论文
共 50 条
  • [21] Design Challenges for Secure Implantable Medical Devices
    Burleson, Wayne
    Clark, Shane S.
    Ransford, Benjamin
    Fu, Kevin
    2012 49TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2012, : 12 - 17
  • [22] FILTRATION OF FLUE GAS BY RETAINING OF NANOPARTICLES IN MICROFLUIDIC DEVICES USING DIELECTROPHORESIS
    Neculae, Adrian
    Bunoiu, Madalin
    Lungu, Antoanetta
    Lungu, Mihai
    ROMANIAN REPORTS IN PHYSICS, 2016, 68 (03) : 1085 - 1096
  • [23] METHOD FOR CHARACTERIZATION OF PASSIVE MECHANICAL FILTRATION OF PARTICLES IN DIGITAL MICROFLUIDIC DEVICES
    Dunning, Peter D.
    Sullivan, Pierre E.
    Schertzer, Michael J.
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 7, 2015,
  • [24] Femtosecond laser fabrication of microfluidic channels for organic photonic devices
    Vishnubhatla, Krishna Chaitanya
    Clark, Jenny
    Lanzani, Guglielmo
    Ramponi, Roberta
    Osellame, Roberto
    Virgili, Tersilla
    APPLIED OPTICS, 2009, 48 (31) : G114 - G118
  • [25] Simulation and verification of polydimethylsiloxane (PDMS) channels on acoustic microfluidic devices
    Scott Padilla
    Emre Tufekcioglu
    Rasim Guldiken
    Microsystem Technologies, 2018, 24 : 3503 - 3512
  • [26] Surface Treatment of Flow Channels in Microfluidic Devices Fabricated by Stereolithography
    Ohtani, Kanako
    Tsuchiya, Masaki
    Sugiyama, Hitomi
    Katakura, Toru
    Hayakawa, Masatoshi
    Kanai, Toshimitsu
    JOURNAL OF OLEO SCIENCE, 2014, 63 (01) : 93 - 96
  • [27] Simulation and verification of polydimethylsiloxane (PDMS) channels on acoustic microfluidic devices
    Padilla, Scott
    Tufekcioglu, Emre
    Guldiken, Rasim
    MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2018, 24 (08): : 3503 - 3512
  • [28] Collapse of microfluidic channels/reservoirs in thin, soft epidermal devices
    Xue, Yeguang
    Kang, Daeshik
    Ma, Yinji
    Feng, Xue
    Rogers, John A.
    Huang, Yonggang
    EXTREME MECHANICS LETTERS, 2017, 11 : 18 - 23
  • [29] DESIGN AND MODELING OF MICROFLUIDIC CELL CAPTURE DEVICES
    Szigeti, Marton
    Jarvas, Gabor
    Guttman, Andras
    CHEMICKE LISTY, 2013, 107 : S458 - S459
  • [30] Constant pressure fluid infusion into rat neocortex from implantable microfluidic devices
    Retterer, S. T.
    Smith, K. L.
    Bjornsson, C. S.
    Turner, J. N.
    Isaacson, M. S.
    Shain, W.
    JOURNAL OF NEURAL ENGINEERING, 2008, 5 (04) : 385 - 391