Maslov index in semi-Riemannian submersions

被引:3
|
作者
Caponio, Erasmo [1 ]
Angel Javaloyes, Miguel [2 ]
Piccione, Paolo [3 ]
机构
[1] Politecn Bari, Dipartimento Matemat, I-70125 Bari, Italy
[2] Univ Granada, Dept Geometria & Topol, Fac Ciencias, E-18071 Granada, Spain
[3] Univ Sao Paulo, Dept Matemat, BR-05508900 Sao Paulo, Brazil
关键词
Semi-Riemannian submersions; O'Neill tensors; Maslov index; CONJUGATE-POINTS; MORSE INDEX; FOCAL POINTS; GEODESICS; GEOMETRY; THEOREM; SYSTEMS;
D O I
10.1007/s10455-010-9200-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study focal points and Maslov index of a horizontal geodesic gamma : I -> M in the total space of a semi-Riemannian submersion pi : M -> B by determining an explicit relation with the corresponding objects along the projected geodesic pi omicron gamma : I -> B in the base space. We use this result to calculate the focal Maslov index of a (spacelike) geodesic in a stationary spacetime which is orthogonal to a timelike Killing vector field.
引用
收藏
页码:57 / 75
页数:19
相关论文
共 50 条
  • [31] CMC Hypersurfaces on Riemannian and Semi-Riemannian Manifolds
    Perdomo, Oscar M.
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (01) : 17 - 37
  • [32] Foliations of Semi-Riemannian Manifolds
    Schaefer, Lars
    RESULTS IN MATHEMATICS, 2012, 61 (1-2) : 97 - 126
  • [33] Conformality on Semi-Riemannian Manifolds
    Bejan, Cornelia-Livia
    Eken, Semsi
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (04) : 2185 - 2198
  • [34] Barycentric interpolation on Riemannian and semi-Riemannian spaces
    Pihajoki, Pauli
    Mannerkoski, Matias
    Johansson, Peter H.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 489 (03) : 4161 - 4169
  • [35] On singular semi-Riemannian manifolds
    Stoica, O. C.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (05)
  • [36] Conformality on Semi-Riemannian Manifolds
    Cornelia-Livia Bejan
    Şemsi Eken
    Mediterranean Journal of Mathematics, 2016, 13 : 2185 - 2198
  • [37] CMC Hypersurfaces on Riemannian and Semi-Riemannian Manifolds
    Oscar M. Perdomo
    Mathematical Physics, Analysis and Geometry, 2012, 15 : 17 - 37
  • [38] On Semi-Slant ξ⊥-Riemannian Submersions
    Akyol, Mehmet Akif
    Sari, Ramazan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2017, 14 (06)
  • [39] Geodesic connectedness of semi-Riemannian manifolds
    Sánchez, M
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (05) : 3085 - 3102
  • [40] Classification via semi-Riemannian spaces
    Zhao, Deli
    Lin, Zhouchen
    Tang, Xiaoou
    2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 39 - +