Variational iteration method for solving cubic nonlinear Schrodinger equation

被引:28
|
作者
Sweilam, N. H. [1 ]
机构
[1] Cairo Univ, Fac Sci, Dept Math, Giza, Egypt
关键词
cubic nonlinear schrodinger equation; variational iteration method;
D O I
10.1016/j.cam.2006.07.023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The variational iteration method is applied to solve the cubic nonlinear Schrodinger (CNLS) equation in one and two space variables. In both cases, we will reduce the CNLS equation to a coupled system of nonlinear equations. Numerical experiments are made to verify the efficiency of the method. Comparison with the theoretical solution shows that the variational iteration method is of high accuracy. (C) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 50 条
  • [41] Parametric cubic spline method for the solution of the nonlinear Schrodinger equation
    Lin, Bin
    COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (01) : 60 - 65
  • [42] Behaviour of cubic nonlinear Schrodinger equation by using the symplectic method
    Liu, XS
    Ding, PZ
    CHINESE PHYSICS LETTERS, 2004, 21 (02) : 230 - 232
  • [43] Dynamic properties of the cubic nonlinear Schrodinger equation by symplectic method
    Liu, XS
    Wei, JY
    Ding, PZ
    CHINESE PHYSICS, 2005, 14 (02): : 231 - 237
  • [44] Optical Gaussons for nonlinear logarithmic Schrodinger equations via the variational iteration method
    Wazwaz, Abdul-Majid
    El-Tantawy, Samir A.
    OPTIK, 2019, 180 (414-418): : 414 - 418
  • [45] Solving a nonlinear fractional Schrodinger equation using cubic B-splines
    Erfanian, M.
    Zeidabadi, H.
    Rashki, M.
    Borzouei, H.
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [46] Variational method for the derivative nonlinear Schrodinger equation with computational applications
    Helal, M. A.
    Seadawy, A. R.
    PHYSICA SCRIPTA, 2009, 80 (03)
  • [47] Variational iteration technique for solving nonlinear equations
    Noor, Muhammad Aslam
    Shah, Farooq Ahmed
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2009, 31 (1-2) : 247 - 254
  • [48] MODIFIED VARIATIONAL ITERATION METHOD FOR SCHRODINGER EQUATIONS
    Mohyud-Din, Syed Tauseef
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2010, 15 (03) : 309 - 317
  • [49] On instability for the cubic nonlinear Schrodinger equation
    Carles, Remi
    COMPTES RENDUS MATHEMATIQUE, 2007, 344 (08) : 483 - 486
  • [50] Cubic nonlinear Schrodinger equation with vorticity
    Caliari, M.
    Loffredo, M. I.
    Morato, L. M.
    Zuccher, S.
    NEW JOURNAL OF PHYSICS, 2008, 10