Data representation for sensor models within a synthetic natural environment (SEDRIS)

被引:0
|
作者
Proctor, MD [1 ]
Connors, PE
机构
[1] Univ Cent Florida, Dept Ind Engn & Management Syst, Orlando, FL 32816 USA
[2] USA, Infantary Div 7, Colorado Springs, CO 80913 USA
关键词
virtual reality; interoperability; synthetic natural environment; sensors; data model; SEDRIS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Synthetic Environment Data Representation and interchange Specification (SEDRIS) methodology enables representation and interchange of environmental data between heterogeneous simulation systems. Central to the SEDRIS methodology is the correlation of local Synthetic Environment data models with the generalized SEDRIS Data Representation Model prior to the interoperation of a distributed system. The Unified Modeling Language and associated Data Dictionary provide the means to umambiguously articulate information about the Data Representation Model. We consider the general representation of sensor systems in the SEDRIS Data Representation Model, provide a survey of sensor simulations, and discuss enhancements to SEDRIS Data Representation Model stemming from our investigation. Future extensions to this methodology are also suggested.
引用
收藏
页码:46 / 53
页数:8
相关论文
共 50 条
  • [21] Accessible Data Representation with Natural Sound
    Hoque, Md Naimul
    Ehtesham-Ul-Haque, Md
    Elmqvist, Niklas
    Billah, Syed Masum
    [J]. PROCEEDINGS OF THE 2023 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, CHI 2023, 2023,
  • [22] Sensor validation within a pervasive medical environment
    O'Donoghue, John
    Herbert, John
    Fensli, Rune
    Dineen, Stephen
    [J]. 2006 IEEE SENSORS, VOLS 1-3, 2006, : 972 - +
  • [23] Validation of Vehicle Environment Sensor Models
    Schaermann, Alexander
    Rauch, Andreas
    Hirsenkorn, Nils
    Hanke, Timo
    Rasshofer, Ralph
    Biebl, Erwin
    [J]. 2017 28TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV 2017), 2017, : 405 - 411
  • [24] Empirical Insights into Deep Learning Models for Misinformation Classification Within Constrained Data Environment
    Devisetti, Jayendra Ganesh
    Sanjana, S.
    Kuranagatti, Shubhankar
    Hiremath, Abhishek
    Arya, Arti
    [J]. ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EANN 2024, 2024, 2141 : 120 - 133
  • [25] Research on Synthetic Natural Environment Data Cube Based on XML B plus Tree Structure
    Lin, Chao
    Wang, JiangYun
    Han, Liang
    [J]. MODELING, DESIGN AND SIMULATION OF SYSTEMS, ASIASIM 2017, PT II, 2017, 752 : 710 - 718
  • [26] Generic Centralized Multi Sensor Data Fusion Based on Probabilistic Sensor and Environment Models for Driver Assistance Systems
    Munz, Michael
    Maehlisch, Mirko
    Dietmayer, Klaus
    [J]. IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE, 2010, 2 (01) : 6 - 17
  • [27] Fusing Thermopile Infrared Sensor Data for Single Component Activity Recognition within a Smart Environment
    Burns, Matthew
    Morrow, Philip
    Nugent, Chris
    McClean, Sally
    [J]. JOURNAL OF SENSOR AND ACTUATOR NETWORKS, 2019, 8 (01):
  • [28] NEW DATA ON NATURAL AND SYNTHETIC FENAXITE
    SOKOLOVA, MN
    SUCHKOVA, EM
    VLASOVA, EV
    GOLOVANOVA, TI
    KARTASHOV, PM
    KOVALENKO, VS
    [J]. DOKLADY AKADEMII NAUK, 1993, 329 (02) : 212 - 215
  • [29] RECENT DATA ON SYNTHETIC AND NATURAL LILLIANITE
    KLYAKHIN, VA
    DMITRIEV.MT
    [J]. DOKLADY AKADEMII NAUK SSSR, 1968, 178 (01): : 173 - &
  • [30] Natural and synthetic podolactones with potential use as natural herbicide models
    Macías, FA
    Simonet, AM
    Pacheco, PC
    Barrero, AF
    Cabrera, E
    Jiménez-González, D
    [J]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2000, 48 (07) : 3003 - 3007