Efficient robust design via Monte Carlo sample reweighting

被引:26
|
作者
Fonseca, Jose R.
Friswell, Michael I.
Lees, Arthur W.
机构
[1] Univ Coll Swansea, Sch Engn, Swansea SA2 8PP, W Glam, Wales
[2] Univ Bristol, Dept Aerosp Engn, Bristol BS8 1TR, Avon, England
关键词
uncertainty; robust design; Monte Carlo; probabilistic;
D O I
10.1002/nme.1850
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A novel probabilistic method for the optimization of robust design problems is presented. The approach is based on an efficient variation of the Monte Carlo simulation method. By shifting most of the computational burden to outside of the optimization loop, optimum designs can be achieved efficiently and accurately. Furthermore by reweighting an initial set of samples the objective function and constraints become smooth functions of changes in the probability distribution of the parameters, rather than the stochastic functions obtained using a standard Monte Carlo method. The approach is demonstrated on a beam truss example, and the optimum designs are verified with regular Monte Carlo simulation. Copyright (c) 2006 John Wiley & Sons, Ltd.
引用
收藏
页码:2279 / 2301
页数:23
相关论文
共 50 条
  • [21] An efficient, robust, domain-decomposition algorithm for particle Monte Carlo
    Brunner, Thomas A.
    Brantley, Patrick S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (10) : 3882 - 3890
  • [22] Reweighting Monte Carlo predictions and automated fragmentation variations in Pythia 8
    Bierlich, Christan
    Ilten, Philip
    Menzo, Tony
    Mrenna, Stephen
    Szewc, Manuel
    Wilkinson, Michael K.
    Youssef, Ahmed
    Zupan, Jure
    SCIPOST PHYSICS, 2024, 16 (05):
  • [23] Robust Optimisation Monte Carlo
    Ikonomov, Borislav
    Gutmann, Michael U.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2819 - 2828
  • [24] Efficient Monte Carlo simulation via the generalized splitting method
    Zdravko I. Botev
    Dirk P. Kroese
    Statistics and Computing, 2012, 22 : 1 - 16
  • [25] Efficient Monte Carlo simulation via the generalized splitting method
    Botev, Zdravko I.
    Kroese, Dirk P.
    STATISTICS AND COMPUTING, 2012, 22 (01) : 1 - 16
  • [26] Efficient Trimmed-sample Monte Carlo Methodology and Yield-aware Design Flow for Analog Circuits
    Kuo, Chin-Cheng
    Hu, Wei-Yi
    Chen, Yi-Hung
    Kuan, Jui-Feng
    Cheng, Yi-Kan
    2012 49TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2012, : 1113 - 1118
  • [27] Robust Distributed Bayesian Learning with Stragglers via Consensus Monte Carlo
    Chittoor, Hari Hara Suthan
    Simeone, Osvaldo
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 609 - 614
  • [28] Robust Stability Investigation of Process Control via Monte Carlo Method
    Puangdownreong, D.
    Suwannarongsri, S.
    Thammarat, C.
    ECTI-CON: 2009 6TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING/ELECTRONICS, COMPUTER, TELECOMMUNICATIONS AND INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2009, : 341 - +
  • [29] Monte Carlo Based Design of Efficient Scintillating Fiber Dosimeters
    Wiles, A.
    Rangaraj, D.
    Loyalka, S.
    Izaguirre, E.
    MEDICAL PHYSICS, 2014, 41 (06) : 555 - 555
  • [30] Stable Learning via Sample Reweighting and Dual Classifiers
    Yang S.
    Wang H.
    Yu K.
    Cao F.-Y.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (07): : 3206 - 3225