On affine classification of permutations on the space GF(2)3

被引:1
|
作者
Malyshev, Fedor M. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Moscow, Russia
来源
DISCRETE MATHEMATICS AND APPLICATIONS | 2019年 / 29卷 / 06期
关键词
permutation; affine transformation; Polya theory; de Brouijn's theorem;
D O I
10.1515/dma-2019-0035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an elementary proof that by multiplication on left and right by affine permutations A, B is an element of AGL(3, 2) each permutation pi:GF(2)(3)-> GF(2)(3) may be reduced to one of the 4 permutations for which the 3x3-matrices consisting of the coefficients of quadratic terms of coordinate functions have as an invariant the rank, which is either 3, or 2, or 1, or 0, respectively. For comparison, we evaluate the number of classes of affine equivalence by the Polya enumerative theory.
引用
收藏
页码:363 / 371
页数:9
相关论文
共 50 条
  • [21] CLASSIFICATION UNDER PERMUTATIONS OF THE TERNARY FUNCTIONS OF 2 VARIABLES
    LLORIS, A
    VELASCO, J
    IEE PROCEEDINGS-E COMPUTERS AND DIGITAL TECHNIQUES, 1981, 128 (04): : 143 - 148
  • [22] Automorphisms of the Affine 3-Space of Degree 3
    Blanc, Jeremy
    Van Santen, Immanuel
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2022, 71 (02) : 857 - 912
  • [23] A normal form and the term-linearity of affine spaces over GF(3)
    Cho, Jung R.
    Kim, Woo Hyun
    ALGEBRA COLLOQUIUM, 2006, 13 (04) : 675 - 684
  • [24] Translation surfaces in affine 3-space
    Lone, Moahmd Saleem
    Karacan, Murat Kemal
    Tuncer, Yilmaz
    Es, Hasan
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (06): : 1944 - 1954
  • [25] Automorphism groups of trees acting locally with affine permutations
    Benakli, N
    Glasner, Y
    GEOMETRIAE DEDICATA, 2002, 89 (01) : 1 - 24
  • [26] Automorphism Groups of Trees Acting Locally with Affine Permutations
    Nadia Benakli
    Yair Glasner
    Geometriae Dedicata, 2002, 89 : 1 - 24
  • [27] On 321-Avoiding Permutations in Affine Weyl Groups
    R.M. Green
    Journal of Algebraic Combinatorics, 2002, 15 : 241 - 252
  • [28] Canonical Decompositions of Affine Permutations, Affine Codes, and Split k-Schur Functions
    Denton, Tom
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):
  • [29] Edge sequences, ribbon tableaux, and an action of affine permutations
    van Leeuwen, MAA
    EUROPEAN JOURNAL OF COMBINATORICS, 1999, 20 (02) : 179 - 195
  • [30] Efficient GPU Implementation of Affine Index Permutations on Arrays
    Bouverot-Dupuis, Mathis
    Sheeran, Mary
    PROCEEDINGS OF THE 11TH ACM SIGPLAN INTERNATIONAL WORKSHOP ON FUNCTIONAL HIGH-PERFORMANCE AND NUMERICAL COMPUTING, FHPNC 2023, 2023, : 15 - 28