Critical density of topological defects upon a continuous phase transition

被引:3
|
作者
Sorokin, A. O. [1 ]
机构
[1] NRC Kurchatov Inst, Petersburg Nucl Phys Inst, Gatchina 188300, Russia
关键词
Monte Carlo simulation; Topological defect; Phase transition; FRUSTRATED XY MODELS; ASHKIN-TELLER MODEL; MONTE-CARLO; 2-DIMENSIONAL SYSTEMS; CRITICAL-BEHAVIOR; STATISTICS; RENORMALIZATION; FERROMAGNET; VORTICES; DISORDER;
D O I
10.1016/j.aop.2019.167952
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using extensive Monte Carlo simulations, we test the hypothesis that the density of corresponding topological defects has a universal value at the temperature of a continuous phase transition. We consider several simple two-dimensional models where domain walls, vortices, so-called Z(2) vortices or their combinations are presented. These topological defects are relevant correspondingly to an 'sing second-order phase transition, a Berezinskii-Kosterlitz-Thouless transition and an explicit crossover. We compare results for square and triangular lattices as well as for the complicated situation when two types of defects are presented and two transitions occur separated in temperature. All considered cases demonstrate consentient results confirming the hypothesis. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Critical fluctuations upon photoinduced phase transition in manganite strips
    HanXuan Lin
    Tian Miao
    Qian Shi
    Yang Yu
    Hao Liu
    Kai Zhang
    WenBin Wang
    LiFeng Yin
    Jian Shen
    Science China Physics, Mechanics & Astronomy, 2018, 61
  • [22] Critical fluctuations upon photoinduced phase transition in manganite strips
    Lin, HanXuan
    Miao, Tian
    Shi, Qian
    Yu, Yang
    Liu, Hao
    Zhang, Kai
    Wang, WenBin
    Yin, LiFeng
    Shen, Jian
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2018, 61 (09)
  • [23] Magnetospheric substorm onset: Topological phase transition on a critical percolating network
    Milovanov, AV
    Zelenyi, LM
    Zimbardo, G
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON SUBSTORMS, 2000, 443 : 183 - 188
  • [24] Fracton critical point at a higher-order topological phase transition
    You, Yizhi
    Bibo, Julian
    Pollmann, Frank
    Hughes, Taylor L.
    PHYSICAL REVIEW B, 2022, 106 (23)
  • [25] Quantum phase transition and critical behavior between the gapless topological phases
    Zhang, Hao-Long
    Li, Han-Ze
    Yang, Sheng
    Yu, Xue-Jia
    PHYSICAL REVIEW A, 2024, 109 (06)
  • [26] Topological Defects and Phase Transitions
    Kosterlitz, John Michael
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2018, 32 (13):
  • [27] FORMATION OF TOPOLOGICAL DEFECTS IN A 2ND-ORDER PHASE-TRANSITION
    BRANDENBERGER, RH
    DAVIS, AC
    PHYSICS LETTERS B, 1994, 332 (3-4) : 305 - 311
  • [28] Probing the topological phase transition via density oscillations in silicene and germanene
    Chang, Hao-Ran
    Zhou, Jianhui
    Zhang, Hui
    Yao, Yugui
    PHYSICAL REVIEW B, 2014, 89 (20)
  • [29] The influence of topological phase transition on the superfluid density of overdoped copper oxides
    Shaginyan, V. R.
    Stephanovich, V. A.
    Msezane, A. Z.
    Japaridze, G. S.
    Popov, K. G.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (33) : 21964 - 21969
  • [30] Topological defects in spin density waves
    Kirova, N
    Brazovskii, S
    JOURNAL DE PHYSIQUE IV, 2000, 10 (P3): : 183 - 189