Critical density of topological defects upon a continuous phase transition

被引:3
|
作者
Sorokin, A. O. [1 ]
机构
[1] NRC Kurchatov Inst, Petersburg Nucl Phys Inst, Gatchina 188300, Russia
关键词
Monte Carlo simulation; Topological defect; Phase transition; FRUSTRATED XY MODELS; ASHKIN-TELLER MODEL; MONTE-CARLO; 2-DIMENSIONAL SYSTEMS; CRITICAL-BEHAVIOR; STATISTICS; RENORMALIZATION; FERROMAGNET; VORTICES; DISORDER;
D O I
10.1016/j.aop.2019.167952
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using extensive Monte Carlo simulations, we test the hypothesis that the density of corresponding topological defects has a universal value at the temperature of a continuous phase transition. We consider several simple two-dimensional models where domain walls, vortices, so-called Z(2) vortices or their combinations are presented. These topological defects are relevant correspondingly to an 'sing second-order phase transition, a Berezinskii-Kosterlitz-Thouless transition and an explicit crossover. We compare results for square and triangular lattices as well as for the complicated situation when two types of defects are presented and two transitions occur separated in temperature. All considered cases demonstrate consentient results confirming the hypothesis. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Evidence for topological defects in a photoinduced phase transition
    Zong, Alfred
    Kogar, Anshul
    Bie, Ya-Qing
    Rohwer, Timm
    Lee, Changmin
    Baldini, Edoardo
    Ergecen, Emre
    Yilmaz, Mehmet B.
    Freelon, Byron
    Sie, Edbert J.
    Zhou, Hengyun
    Straquadine, Joshua
    Walmsley, Philip
    Dolgirev, Pavel E.
    Rozhkov, Alexander V.
    Fisher, Ian R.
    Jarillo-Herrero, Pablo
    Fine, Boris V.
    Gedik, Nuh
    NATURE PHYSICS, 2019, 15 (01) : 27 - +
  • [2] Evidence for topological defects in a photoinduced phase transition
    Alfred Zong
    Anshul Kogar
    Ya-Qing Bie
    Timm Rohwer
    Changmin Lee
    Edoardo Baldini
    Emre Ergeçen
    Mehmet B. Yilmaz
    Byron Freelon
    Edbert J. Sie
    Hengyun Zhou
    Joshua Straquadine
    Philip Walmsley
    Pavel E. Dolgirev
    Alexander V. Rozhkov
    Ian R. Fisher
    Pablo Jarillo-Herrero
    Boris V. Fine
    Nuh Gedik
    Nature Physics, 2019, 15 : 27 - 31
  • [3] A simple topological model with continuous phase transition
    Baroni, F.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
  • [4] Footprint of a topological phase transition on the density of states
    De Moor, Joris
    Sadel, Christian
    Schulz-Baldes, Hermann
    LETTERS IN MATHEMATICAL PHYSICS, 2023, 113 (05)
  • [5] Footprint of a topological phase transition on the density of states
    Joris De Moor
    Christian Sadel
    Hermann Schulz-Baldes
    Letters in Mathematical Physics, 113
  • [6] Disorder Topological Defects Induce Photonic Phase Transition
    Wang, Bo
    Maguid, Elhanan
    Yannai, Michael
    Faerman, Arkady
    Kleiner, Vladimir
    Hasman, Erez
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [7] Role of boundary conditions in the full counting statistics of topological defects after crossing a continuous phase transition
    Gomez-Ruiz, Fernando J.
    Subires, David
    del Campo, Adolfo
    PHYSICAL REVIEW B, 2022, 106 (13)
  • [8] Topological quantum phase transition in magnetic topological insulator upon magnetization rotation
    Kawamura, Minoru
    Mogi, Masataka
    Yoshimi, Ryutaro
    Tsukazaki, Atsushi
    Kozuka, Yusuke
    Takahashi, Kei S.
    Kawasaki, Masashi
    Tokura, Yoshinori
    PHYSICAL REVIEW B, 2018, 98 (14)
  • [9] Signatures of topological phase transition on a quantum critical line
    Kumar, Ranjith R.
    Roy, Nilanjan
    Kartik, Y. R.
    Rahul, S.
    Sarkar, Sujit
    PHYSICAL REVIEW B, 2023, 107 (20)
  • [10] Universal Statistics of Topological Defects Formed in a Quantum Phase Transition
    del Campo, Adolfo
    PHYSICAL REVIEW LETTERS, 2018, 121 (20)