A concept for containing inertial fusion energy pulses in a Z-Pinch-Driven Power Plant

被引:7
|
作者
Rochau, GE
Morrow, CW
Pankuch, PJ
机构
[1] Sandia Natl Labs, Albuquerque, NM 87185 USA
[2] EG&G Tech Serv Inc, Albuquerque, NM 87106 USA
关键词
inertial fusion energy; Z-pinch; containment;
D O I
10.13182/FST03-A290
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The Z-Pinch Power Plant (ZP-3) is the first concept to use the results at Sandia National Laboratories' Z accelerator in a powerplant application. Assuming high-yield fusion pulses (of 1 to 20 GJ per shot at a rate Of 0.1 Hz), we consider a unique shock and energy absorbing system to contain the energy. One concept answers the need for system standoff from the fusion reaction with a replaceable mechanical cartridge manufactured on-site. System studies suggest integrated blanket designs for absorbing the fusion energy, cartridge manufacture of recycled materials, and cartridge installation/replacement to maintain a reasonable duty cycle. An effective system design for ZP-3 requires an integrated blanket to shield the permanent structures from the high-energy neutron flux and strong shock wave, breed tritium, and simultaneously absorb the released fusion energy. We investigate the feasibility of this integrated blanket concept and explore the principles of a containment chamber-a crucible - and the containment mechanisms. An operational cycle is proposed to physically load hardware in 10-s intervals while maintaining operational conditions. Preliminary pressure and shock calculations demonstrate that high-yield inertial fusion energy pulses can be contained if the appropriate energy-absorbing materials are used.
引用
收藏
页码:447 / 455
页数:9
相关论文
共 50 条
  • [21] Soft x-ray measurements of z-pinch-driven vacuum hohlraums
    Baker, KL
    Porter, JL
    Ruggles, LE
    Chandler, GA
    Deeney, C
    Vargas, M
    Moats, A
    Struve, K
    Torres, J
    McGurn, J
    Simpson, WW
    Fehl, DL
    Chrien, RE
    Matuska, W
    Idzorek, GC
    APPLIED PHYSICS LETTERS, 1999, 75 (06) : 775 - 777
  • [22] Self-consistent modeling of power flow in a recyclable transmission line for a Z-pinch-driven IFE system
    Ottinger, Paul F.
    Schumer, Joseph W.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2007, 35 (02) : 154 - 164
  • [23] Particle drift model for Z-pinch-driven magneto-Rayleigh-Taylor instability
    Dan, Jia Kun
    Xu, Qiang
    Wang, Kun Lun
    Ren, Xiao Dong
    Huang, Xian Bin
    PHYSICS OF PLASMAS, 2016, 23 (09)
  • [24] Z pinch driven inertial confinement fusion target physics research at Sandia National Laboratories
    Leeper, R.J.
    Alberts, T.E.
    Asay, J.R.
    Baca, P.M.
    Baker, K.L.
    Breeze, S.P.
    Chandler, G.A.
    Cook, D.L.
    Cooper, G.W.
    Deeney, C.
    Derzon, M.S.
    Douglas, M.R.
    Fehl, D.L.
    Gilliland, T.
    Hebron, D.E.
    et. al.
    Nuclear Fusion, 1999, 39 (Special Issue): : 1283 - 1294
  • [25] Z pinch driven inertial confinement fusion target physics research at Sandia National Laboratories
    Leaper, RJ
    Alberts, TE
    Asay, JR
    Baca, PM
    Baker, KL
    Breeze, SP
    Chandler, GA
    Cook, DL
    Cooper, GW
    Deeney, C
    Derzon, MS
    Douglas, MR
    Fehl, DL
    Gilliland, T
    Hebron, DE
    Hurst, MJ
    Jobe, DO
    Kellogg, JW
    Lash, JS
    Lazier, SE
    Matzen, MK
    McDaniel, DH
    McGurn, JS
    Mehlhorn, TA
    Moats, AR
    Mock, RC
    Muron, DJ
    Nash, TJ
    Olson, RE
    Porter, JL
    Quintenz, JP
    Reyes, PV
    Ruggles, LE
    Ruiz, CL
    Sanford, TWL
    Schmidlapp, FA
    Seamen, JF
    Spielman, RB
    Stark, MA
    Struve, KW
    Stygar, WA
    Tibbetts-Russell, DR
    Torres, JA
    Vargas, T
    Wagoner, TC
    Wakefield, C
    Hammer, JH
    Ryutov, DD
    Tabak, M
    Wilks, SC
    NUCLEAR FUSION, 1999, 39 (9Y) : 1283 - 1294
  • [26] Numerical simulation on a new cylindrical target for Z-pinch driven inertial confinement fusion
    Chu, Y. Y.
    Wang, Z.
    Qi, J. M.
    Wu, F. Y.
    Li, Z. H.
    NUCLEAR FUSION, 2017, 57 (06)
  • [27] Z-pinch requirements for achieving high yield fusion via a z-pinch driven, double ended hohlraum concept
    Lemke, Raymond W.
    Vesey, Roger A.
    Cuneo, Michael E.
    Desjarlais, Michael P.
    Mehlhorn, Thomas A.
    MEGAGAUSS MAGNETIC FIELDS AND HIGH ENERGY LINER TECHNOLOGY, 2007, : 507 - 512
  • [28] THE NEO-Z-PINCH CONCEPT IN MAGNETIC FUSION
    IKUTA, K
    JAPANESE JOURNAL OF APPLIED PHYSICS, 1980, 19 (08) : 1527 - 1531
  • [29] Engineering issues facing transmutation of actinides in Z-pinch fusion power plant
    El-Guebaly, L.
    Cipiti, B.
    Wilson, P. H.
    Phruksarojanakun, P.
    Grady, R.
    Sviatoslavsky, I.
    FUSION SCIENCE AND TECHNOLOGY, 2007, 52 (03) : 739 - 743
  • [30] Direct drive inertial confinement fusion in a Z-pinch plasma
    Clark, RW
    Davis, J
    Velikovich, A
    Rudakov, L
    Giuliani, JL
    DENSE Z-PINCHES, 2002, 651 : 275 - 278