Role of Ocean and Atmosphere Variability in Scale-Dependent Thermodynamic Air-Sea Interactions

被引:9
|
作者
Laurindo, Lucas C. [1 ,2 ]
Small, R. Justin [1 ,2 ]
Thompson, LuAnne [3 ]
Siqueira, Leo [4 ]
Bryan, Frank O. [2 ]
Chang, Ping [1 ,5 ,6 ]
Danabasoglu, Gokhan [1 ,2 ]
Kamenkovich, Igor, V [4 ]
Kirtman, Ben P. [4 ]
Wang, Hong [1 ,7 ,8 ,9 ]
Zhang, Shaoqing [1 ,7 ,8 ,9 ]
机构
[1] Texas A&M Univ, Int Lab High Resolut Earth Syst Predict iHESP, College Stn, TX 77843 USA
[2] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
[3] Univ Washington, Sch Oceanog, Seattle, WA 98195 USA
[4] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, 4600 Rickenbacker Causeway, Miami, FL 33149 USA
[5] Texas A&M Univ, Dept Oceanog, College Stn, TX 77843 USA
[6] Texas A&M Univ, Dept Atmospher Sci, College Stn, TX USA
[7] Qingdao Pilot Natl Lab Marine Sci & Technol, Lab Ocean Dynam & Climate, Qingdao, Peoples R China
[8] Ocean Univ China, Key Lab Phys Oceanog, Coll Ocean & Atmospher Sci, Inst Adv Ocean Study, Qingdao, Peoples R China
[9] Ocean Univ China, Ctr Deep Ocean Muitispheres & Earth Syst DOMES, Qingdao, Peoples R China
基金
美国海洋和大气管理局; 美国国家科学基金会;
关键词
air-sea interactions; high-resolution climate models; stochastic climate models; satellite observations; cross-spectral analysis; mesoscale ocean processes; SURFACE TEMPERATURE ANOMALIES; ATLANTIC MULTIDECADAL OSCILLATION; STOCHASTIC CLIMATE MODELS; TURBULENT HEAT FLUXES; GEOSTROPHIC TURBULENCE; SATELLITE-OBSERVATIONS; SPECTRAL-ANALYSIS; MESOSCALE EDDIES; INDIAN-OCEAN; PART I;
D O I
10.1029/2021JC018340
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
This study investigates the influence of oceanic and atmospheric processes in extratropical thermodynamic air-sea interactions resolved by satellite observations (OBS) and by two climate model simulations run with eddy-resolving high-resolution (HR) and eddy-parameterized low-resolution (LR) ocean components. Here, spectral methods are used to characterize the sea surface temperature (SST) and turbulent heat flux (THF) variability and co-variability over scales between 50 and 10,000 km and 60 days to 80 years in the Pacific Ocean. The relative roles of the ocean and atmosphere are interpreted using a stochastic upper-ocean temperature evolution model forced by noise terms representing intrinsic variability in each medium, defined using climate model data to produce realistic rather than white spectral power density distributions. The analysis of all datasets shows that the atmosphere dominates the SST and THF variability over zonal wavelengths larger than similar to 2,000-2,500 km. In HR and OBS, ocean processes dominate the variability of both quantities at scales smaller than the atmospheric first internal Rossby radius of deformation (R-1, similar to 600-2,000 km) due to a substantial ocean forcing coinciding with a weaker atmospheric modulation of THF (and consequently of SST) than at larger scales. The ocean forcing also induces oscillations in SST and THF with periods ranging from intraseasonal to multidecadal, reflecting a red spectrum response to ocean forcing similar to that driven by atmospheric forcing. Such features are virtually absent in LR due to a weaker ocean forcing relative to HR.
引用
收藏
页数:26
相关论文
共 50 条
  • [21] Bulk parameterization of air-sea fluxes for Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment
    Fairall, CW
    Bradley, EF
    Rogers, DP
    Edson, JB
    Young, GS
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 1996, 101 (C2) : 3747 - 3764
  • [22] The Impact of Air-Sea Interactions on the Simulation of Tropical Intraseasonal Variability
    Pegion, Kathy
    Kirtman, Ben P.
    JOURNAL OF CLIMATE, 2008, 21 (24) : 6616 - 6635
  • [23] Impact of Stochastic Ocean Density Corrections on Air-Sea Flux Variability
    Agarwal, Niraj
    Small, R. Justin
    Bryan, Frank O.
    Grooms, Ian
    Pegion, Philip J.
    GEOPHYSICAL RESEARCH LETTERS, 2023, 50 (13)
  • [24] Impacts of Air-sea Interactions on Regional Air Quality Predictions Using a Coupled Atmosphere-ocean Model in Southeastern US
    He, Jian
    He, Ruoying
    Zhang, Yang
    AEROSOL AND AIR QUALITY RESEARCH, 2018, 18 (04) : 1044 - 1067
  • [25] Air-sea CO2 flux variability in frontal regions of the Southern Ocean from CARbon Interface OCean Atmosphere drifters
    Boutin, J.
    Merlivat, L.
    Henocq, C.
    Martin, N.
    Sallee, J. B.
    LIMNOLOGY AND OCEANOGRAPHY, 2008, 53 (05) : 2062 - 2079
  • [26] A coupled atmosphere-ocean wave system for understanding air-sea fluxes
    Perrie, W.
    Zhang, Y.
    WIT Transactions on the Built Environment, 2003, 70 : 305 - 312
  • [27] The Relative Roles of the Ocean and Atmosphere as Revealed by Buoy Air-Sea Observations in Hurricanes
    Cione, Joseph J.
    MONTHLY WEATHER REVIEW, 2015, 143 (03) : 904 - 913
  • [28] A coupled atmosphere-ocean wave system for understanding air-sea fluxes
    Perrie, W
    Zhang, Y
    COASTAL ENGINEERING VI: COMPUTER MODELLING AND EXPERIMENTAL MEASUREMENTS OF SEAS AND COASTAL REGIONS, 2003, 9 : 305 - 312
  • [29] Developing an Observing Air-Sea Interactions Strategy (OASIS) for the global ocean
    Cronin, M. F.
    Swart, S.
    Marandino, C. A.
    Anderson, C.
    Browne, P.
    Chen, S.
    Joubert, W. R.
    Schuster, U.
    Venkatesan, R.
    Addey, C., I
    Alves, O.
    Ardhuin, F.
    Battle, S.
    Bourassa, M. A.
    Chen, Z.
    Chory, M.
    Clayson, C.
    de Souza, R. B.
    du Plessis, M.
    Edmondson, M.
    Edson, J. B.
    Gille, S. T.
    Hermes, J.
    Hormann, V
    Josey, S. A.
    Kurz, M.
    Lee, T.
    Maicu, F.
    Moustahfid, E. H.
    Nicholson, S-A
    Nyadjro, E. S.
    Palter, J.
    Patterson, R. G.
    Penny, S. G.
    Pezzi, L. P.
    Pinardi, N.
    Eyre, J. E. J. Reeves
    Rome, N.
    Subramanian, A. C.
    Stienbarger, C.
    Steinhoff, T.
    Sutton, A. J.
    Tomita, H.
    Wills, S. M.
    Wilson, C.
    Yu, L.
    ICES JOURNAL OF MARINE SCIENCE, 2023, 80 (02) : 367 - 373
  • [30] The role of the air-sea temperature difference in air-sea exchange
    Phillips, LF
    GEOPHYSICAL RESEARCH LETTERS, 2004, 31 (17) : L173011 - 4