Effect of hydrogen on evolution of deformation microstructure in low-carbon steel with ferrite microstructure

被引:26
|
作者
Okada, Kazuho [1 ]
Shibata, Akinobu [1 ,2 ,3 ]
Gong, Wu [2 ,4 ]
Tsuji, Nobuhiro [1 ,2 ]
机构
[1] Kyoto Univ, Dept Mat Sci & Engn, Sakyo Ku, Yoshida Honmachi, Kyoto 6068501, Japan
[2] Kyoto Univ, Elements Strategy Initiat Struct Mat ESISM, Sakyo Ku, Yoshida Honmachi, Kyoto 6068501, Japan
[3] Natl Inst Mat Sci NIMS, Res Ctr Struct Mat, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[4] Japan Atom Energy Agcy, J PARC Ctr, 2-4 Shirane Shirakata, Ibaraki 3191195, Japan
关键词
Hydrogen embrittlement; Ferritic steel; Electron backscattered diffraction (EBSD); Transmission electron microscopy (TEM); Neutron diffraction; FE-3 PERCENT SI; GRAIN-ORIENTATION; CRACK-PROPAGATION; SINGLE-CRYSTALS; CRYSTALLOGRAPHIC FEATURES; DISLOCATION-STRUCTURES; PLASTIC-DEFORMATION; CELL-FORMATION; IN-SITU; EMBRITTLEMENT;
D O I
10.1016/j.actamat.2021.117549
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, the deformation microstructure of hydrogen-charged ferritic-pearlitic 2Mn-0.1C steel was characterized using SEM-BSE, SEM-EBSD, TEM, and neutron diffraction. The microscopic mechanism of hydrogen-related quasi-cleavage fracture along the {011} planes was also discussed. It was found that hydrogen increased the relative velocity of screw dislocations to edge dislocations, leading to a tangled dislocation morphology, even at the initial stage of deformation ( e = 3%). In addition, the density of screw dislocations at the later stage of deformation ( e = 20%) increased in the presence of hydrogen. Based on the experimental results, it is proposed that a high density of vacancies accumulated along {011} slip planes by jog-dragging of screw dislocations, and coalescence of the accumulated vacancies led to the hydrogen-related quasi-cleavage fracture along the {011} slip planes. (c) 2021 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Effect of austempering time on microstructure and properties of a low-carbon bainite steel
    Man Liu
    Guang Xu
    Jun-yu Tian
    Qing Yuan
    Xin Chen
    International Journal of Minerals, Metallurgy and Materials, 2020, 27 : 340 - 346
  • [32] Influence of annealing temperatures on microstructure evolution and mechanical properties in a low-carbon steel
    Jiang, You-hui
    Yao, Shun
    Liu, Wei
    Han, Yun
    Liu, Su-peng
    Tian, Geng
    Zhao, Ai-min
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2020, 27 (08) : 981 - 991
  • [33] Effect of austempering time on microstructure and properties of a low-carbon bainite steel
    Man Liu
    Guang Xu
    Jun-yu Tian
    Qing Yuan
    Xin Chen
    International Journal of Minerals Metallurgy and Materials, 2020, 27 (03) : 340 - 346
  • [34] Effect of boron on the microstructure of low-carbon steel resistance seam welds
    Oak Ridge Natl Lab, Oak Ridge, United States
    Weld J (Miami Fla), 6 (249s-253s):
  • [35] Effect of Frictional Treatment on the Microstructure and Surface Properties of Low-Carbon Steel
    Savrai, R. A.
    Davydova, N. A.
    Makarov, A. V.
    Malygina, I. Yu.
    MECHANICS, RESOURCE AND DIAGNOSTICS OF MATERIALS AND STRUCTURES (MRDMS-2018), 2018, 2053
  • [36] Influence of annealing temperatures on microstructure evolution and mechanical properties in a low-carbon steel
    You-hui Jiang
    Shun Yao
    Wei Liu
    Yun Han
    Su-peng Liu
    Geng Tian
    Ai-min Zhao
    Journal of Iron and Steel Research International, 2020, 27 : 981 - 991
  • [37] The deformation behavior of the gradient nanostructured microstructure of low-carbon steel under the tensile stress
    Zhou, Xiaomeng
    Mao, Xiangyang
    Su, Guoquan
    Sun, Wenwei
    Zhang, Chuhan
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2022, 844
  • [38] Microstructure and Texture Evolution in Low Carbon and Low Alloy Steel during Warm Deformation
    Xu, Sheng
    Xu, Haijie
    Shu, Xuedao
    Li, Shuxin
    Shen, Zhongliang
    MATERIALS, 2022, 15 (07)
  • [39] Effect of Hydrogen Content on the Microstructure, Mechanical Properties, and Fracture Mechanism of Low-Carbon Lath Martensite Steel
    Yanachkov, Boris
    Mourdjeva, Yana
    Valuiska, Kateryna
    Dyakova, Vanya
    Kolev, Krasimir
    Kaleicheva, Julieta
    Lazarova, Rumyana
    Katzarov, Ivaylo
    METALS, 2024, 14 (12)
  • [40] Mechanisms of microstructure evolution during deformation of undercooled austenite in a low carbon steel
    Qi, Junjie
    Yang, Wangyue
    Sun, Zuqing
    Beijing Keji Daxue Xuebao/Journal of University of Science and Technology Beijing, 2002, 24 (02):