The stretching force on a tethered polymer in pressure-driven flow

被引:7
|
作者
Szuttor, Kai [1 ]
Roy, Tamal [2 ]
Hardt, Steffen [2 ]
Holm, Christian [1 ]
Smiatek, Jens [1 ]
机构
[1] Univ Stuttgart, Inst Computat Phys, Allmandring 3, D-70569 Stuttgart, Germany
[2] Tech Univ Darmstadt, Inst Nano & Microfluid, Alarich Weiss Str 10, D-64287 Darmstadt, Germany
来源
JOURNAL OF CHEMICAL PHYSICS | 2017年 / 147卷 / 03期
关键词
LATTICE BOLTZMANN SIMULATIONS; LONG DNA-MOLECULES; POLYELECTROLYTE ELECTROPHORESIS; SHEAR-FLOW; SEPARATION; DYNAMICS; DIFFUSION; MOBILITY; CHAINS;
D O I
10.1063/1.4993619
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We use mesoscopic lattice-Boltzmann/molecular dynamics simulations to study the stretching behavior of a single tethered polymer in micro-and nanochannels. In particular, we are interested in the connection between fluid flow properties and the force on the polymer chain. An analytical expression for the stretching force is proposed, which linearly depends on the number of monomers and the boundary shear rate. In agreement with theory, the numerical findings reveal that the influence of hydrodynamic interactions can be ignored, which is also supported by results of additional Langevin dynamics simulations. Our simulation data coincide with the analytical expression for the fractional extension of the chain and further indicate that even weak Poiseuille flow profiles induce a strong alignment of the chain along the channel walls. The numerical results are in good agreement with experimental data obtained by microfluidic stretching of tethered lambda-DNA. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Pressure-driven flow control and chemical reaction in nanochannels
    Tamaki, E
    Hibara, A
    Kim, HB
    Tokeshi, M
    Ooi, T
    Nakao, M
    Kitamori, T
    [J]. Micro Total Analysis Systems 2004, Vol 1, 2005, (296): : 318 - 320
  • [32] A fluorogenic assay using pressure-driven flow on a microchip
    Kerby, M
    Chien, RL
    [J]. ELECTROPHORESIS, 2001, 22 (18) : 3916 - 3923
  • [33] Particle migration in pressure-driven flow of a Brownian suspension
    Frank, M
    Anderson, D
    Weeks, ER
    Morris, JF
    [J]. JOURNAL OF FLUID MECHANICS, 2003, 493 : 363 - 378
  • [34] Pressure-driven flow focusing of two miscible liquids
    Bihi, Ilyesse
    Vesperini, Doriane
    Kaoui, Badr
    Le Goff, Anne
    [J]. PHYSICS OF FLUIDS, 2019, 31 (06)
  • [35] Design and verification of the pressure-driven radial flow microrheometer
    Xie, Zhe
    Zou, Qian
    Yao, Donggang
    [J]. TRIBOLOGY TRANSACTIONS, 2008, 51 (04) : 396 - 402
  • [36] Absence of pressure-driven supersolid flow at low frequency
    Rittner, Ann Sophie C.
    Choi, Wonsuk
    Mueller, Erich J.
    Reppy, John D.
    [J]. PHYSICAL REVIEW B, 2009, 80 (22)
  • [37] Pressure-driven flow across a hyperelastic porous membrane
    Song, Ryungeun
    Stone, Howard A.
    Jensen, Kaare H.
    Lee, Jinkee
    [J]. JOURNAL OF FLUID MECHANICS, 2019, 871 : 742 - 754
  • [38] PRESSURE-DRIVEN FLOW OF SUSPENSIONS OF LIQUID-DROPS
    ZHOU, H
    POZRIKIDIS, C
    [J]. PHYSICS OF FLUIDS, 1994, 6 (01) : 80 - 94
  • [39] PRESSURE-DRIVEN PERVAPORATION
    GONCALVES, MD
    WINDMOLLER, D
    ERISMANN, ND
    GALEMBECK, F
    [J]. SEPARATION SCIENCE AND TECHNOLOGY, 1990, 25 (9-10) : 1079 - 1085
  • [40] On pressure-driven Poiseuille flow with non-monotonic rheology
    Talon, L.
    Salin, D.
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2024, 47 (08):