Deep Convolutional Compressed Sensing for LiDAR Depth Completion

被引:12
|
作者
Chodosh, Nathaniel [1 ]
Wang, Chaoyang [1 ]
Lucey, Simon [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
来源
关键词
Depth completion; Super LiDAR; Convolutional sparse coding;
D O I
10.1007/978-3-030-20887-5_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we consider the problem of estimating a dense depth map from a set of sparse LiDAR points. We use techniques from compressed sensing and the recently developed Alternating Direction Neural Networks (ADNNs) to create a deep network which performs multi-layer convolutional compressed sensing. Our architecture internally performs the optimization for extracting convolutional sparse codes from the input which are then used to make a prediction. Our results demonstrate that with only three layers and 1800 parameters we achieve performance which is competitive with the state of the art, including deep networks with orders of magnitude more parameters and layers.
引用
收藏
页码:499 / 513
页数:15
相关论文
共 50 条
  • [31] A temporal Convolutional Network for EMG compressed sensing reconstruction
    Zhang, Liangyu
    Chen, Junxin
    Liu, Wenyan
    Liu, Xiufang
    Ma, Chenfei
    Xu, Lisheng
    [J]. MEASUREMENT, 2024, 225
  • [32] Video Compressed Sensing Using a Convolutional Neural Network
    Shi, Wuzhen
    Liu, Shaohui
    Jiang, Feng
    Zhao, Debin
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (02) : 425 - 438
  • [33] Convolutional Compressed Sensing for Smartphone Acceleration Data Compression
    Xu, Liqiang
    Nishiyama, Yuuki
    Shimosaka, Masamichi
    Tsubouchi, Kota
    Sezaki, Kaoru
    [J]. PROCEEDINGS OF THE TWENTIETH ACM CONFERENCE ON EMBEDDED NETWORKED SENSOR SYSTEMS, SENSYS 2022, 2022, : 810 - 811
  • [34] Rolling bearing fault feature learning using improved convolutional deep belief network with compressed sensing
    Shao, Haidong
    Jiang, Hongkai
    Zhang, Haizhou
    Duan, Wenjing
    Liang, Tianchen
    Wu, Shuaipeng
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 100 : 743 - 765
  • [35] Robust Spectral Compressed Sensing via Structured Matrix Completion
    Chen, Yuxin
    Chi, Yuejie
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (10) : 6576 - 6601
  • [36] Image Compressed Sensing Using Convolutional Neural Network
    Shi, Wuzhen
    Jiang, Feng
    Liu, Shaohui
    Zhao, Debin
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 375 - 388
  • [37] Convolutional Compressed Sensing Using Decimated Sidelnikov Sequences
    Yu, Nam Yul
    Gan, Lu
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (05) : 591 - 594
  • [38] Structured Convolutional Compressed Sensing Based on Deterministic Subsamplers
    Wang, Shu
    Wang, Zhongyuan
    Luo, Yimin
    [J]. ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2017, PT I, 2018, 10735 : 400 - 410
  • [39] Deep Sparse Depth Completion Using Joint Depth and Normal Estimation
    Li, Ying
    Jung, Cheolkon
    [J]. 2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [40] GRAYSCALE AND NORMAL GUIDED DEPTH COMPLETION WITH A LOW-COST LIDAR
    Yu, Qingyang
    Chu, Lei
    Wu, Qi
    Pei, Ling
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 979 - 983