Deep Convolutional Compressed Sensing for LiDAR Depth Completion

被引:12
|
作者
Chodosh, Nathaniel [1 ]
Wang, Chaoyang [1 ]
Lucey, Simon [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
来源
关键词
Depth completion; Super LiDAR; Convolutional sparse coding;
D O I
10.1007/978-3-030-20887-5_31
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we consider the problem of estimating a dense depth map from a set of sparse LiDAR points. We use techniques from compressed sensing and the recently developed Alternating Direction Neural Networks (ADNNs) to create a deep network which performs multi-layer convolutional compressed sensing. Our architecture internally performs the optimization for extracting convolutional sparse codes from the input which are then used to make a prediction. Our results demonstrate that with only three layers and 1800 parameters we achieve performance which is competitive with the state of the art, including deep networks with orders of magnitude more parameters and layers.
引用
收藏
页码:499 / 513
页数:15
相关论文
共 50 条
  • [1] Classification Guided Deep Convolutional Network for Compressed Sensing
    Cui, Wenxue
    Liu, Shaohui
    Zhang, Shengping
    Liu, Yashu
    Xu, Heyao
    Gao, Xinwei
    Jiang, Feng
    Zhao, Debin
    [J]. 2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 2905 - 2910
  • [2] LiDAR Meta Depth Completion
    Boettcher, Wolfgang
    Hoyer, Lukas
    Unal, Ozan
    Li, Ke
    Dai, Dengxin
    [J]. 2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 7750 - 7756
  • [3] Uncertainty-Aware Interactive LiDAR Sampling for Deep Depth Completion
    Taguchi, Kensuke
    Morita, Shogo
    Hayashi, Yusuke
    Imaeda, Wataru
    Fujiyoshi, Hironobu
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 3027 - 3035
  • [4] Compressed Sensing via a Deep Convolutional Auto-encoder
    Wu, Hao
    Zheng, Ziyang
    Li, Yong
    Dai, Wenrui
    Xiong, Hongkai
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP), 2018,
  • [5] Deep Convolutional Compressed Sensing-Based Adaptive 3D Reconstruction of Sparse LiDAR Data: A Case Study for Forests
    Shinde, Rajat C.
    Durbha, Surya S.
    [J]. REMOTE SENSING, 2023, 15 (05)
  • [6] Deterministic Guided LiDAR Depth Map Completion
    Krauss, Bryan
    Schroeder, Gregory
    Gustke, Marko
    Hussein, Ahmed
    [J]. 2021 32ND IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2021, : 824 - 831
  • [7] A Surface Geometry Model for LiDAR Depth Completion
    Zhao, Yiming
    Bai, Lin
    Zhang, Ziming
    Huang, Xinming
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (03) : 4457 - 4464
  • [8] Deep Compressed Sensing
    Wu, Yan
    Rosca, Mihaela
    Lillicrap, Timothy
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [9] Learning Guided Convolutional Network for Depth Completion
    Tang, Jie
    Tian, Fei-Peng
    Feng, Wei
    Li, Jian
    Tan, Ping
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1116 - 1129
  • [10] Deep Architecture With Cross Guidance Between Single Image and Sparse LiDAR Data for Depth Completion
    Lee, Sihaeng
    Lee, Janghyeon
    Kim, Doyeon
    Kim, Junmo
    [J]. IEEE ACCESS, 2020, 8 : 79801 - 79810