Anti-triangular and anti-m-Hessenberg forms for Hermitian matrices and pencils

被引:4
|
作者
Mehl, C [1 ]
机构
[1] TU Chemnitz, Fak Math, D-09107 Chemnitz, Germany
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
D O I
10.1016/S0024-3795(00)00156-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hermitian pencils, i.e., pairs of Hermitian matrices, arise in many applications, such as linear quadratic optimal control or quadratic eigenvalue problems. We derive conditions from which anti-triangular and anti-m-Hessenberg forms for general (including singular) Hermitian pencils can be obtained under unitary equivalence transformations. (C) 2000 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:143 / 176
页数:34
相关论文
共 50 条
  • [21] A note on the Drazin inverse of an anti-triangular matrix
    Deng, Chunyuan
    Wei, Yimin
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (10) : 1910 - 1922
  • [22] On the Drazin inverse of an anti-triangular block matrix
    Yu, Anqi
    Wang, Xiunan
    Deng, Chunyuan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 489 : 274 - 287
  • [23] The essential spectrums of 2x2 unbounded anti-triangular operator matrices
    Liu, Xinran
    Wu, Deyu
    ANNALS OF FUNCTIONAL ANALYSIS, 2024, 15 (02)
  • [24] The Expression for the Group Inverse of the Anti-triangular Block Matrix
    Du, Fapeng
    Xue, Yifeng
    FILOMAT, 2014, 28 (06) : 1103 - 1112
  • [25] g-Drazin inverse and group inverse for the anti-triangular block-operator matrices
    Chen, Huanyin
    Sheibani, Marjan
    FILOMAT, 2024, 38 (14) : 4973 - 4990
  • [26] A note on formulae for the generalized Drazin inverse of anti-triangular block operator matrices in Banach spaces
    Zhang, Daochang
    Jin, Yu
    Mosic, Dijana
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2022, 16 (02)
  • [27] A note on formulae for the generalized Drazin inverse of anti-triangular block operator matrices in Banach spaces
    Daochang Zhang
    Yu Jin
    Dijana Mosić
    Banach Journal of Mathematical Analysis, 2022, 16
  • [28] Rank-revealing decomposition of symmetric indefinite matrices via block anti-triangular factorization
    Mastronardi, Nicola
    Van Dooren, Paul
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 502 : 126 - 139
  • [29] Group inverse for a class of 2×2 anti-triangular block matrices over skew fields
    Chongguang Cao
    Chunjie Zhao
    Journal of Applied Mathematics and Computing, 2012, 40 (1-2) : 87 - 93
  • [30] THE DRAZIN INVERTIBILITY OF AN ANTI-TRIANGULAR MATRIX OVER A RING
    Zou, Honglin
    Chen, Jianlong
    Mosic, Dijana
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2017, 54 (04) : 489 - 508