The topology of local commensurability graphs

被引:0
|
作者
Bou-Rabee, Khalid [1 ]
Studenmund, Daniel [2 ]
机构
[1] CCNY CUNY, Dept Math, New York, NY 10031 USA
[2] Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USA
来源
关键词
commensurability; nilpotent groups; free groups; very large groups; RESIDUAL FINITENESS; GROWTH;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We initiate the study of the p-local commensurability graph of a group, where p is a prime. This graph has vertices consisting of all finite-index subgroups of a group, where an edge is drawn between A and B if [A : A boolean AND B] and [B : A boolean AND B] are both powers of p. We show that any component of the p-local commensurability graph of a group with all nilpotent finite quotients is complete. Further, this topological criterion characterizes such groups. In contrast to this result, we show that for any prime p the p-local commensurability graph of any large group (e.g. a nonabelian free group or a surface group of genus two or more or, more generally, any virtually special group) has geodesics of arbitrarily long length.
引用
收藏
页码:429 / 442
页数:14
相关论文
共 50 条
  • [31] COMMENSURABILITY
    WENG, WB
    ACTA GEOPHYSICA SINICA, 1981, 24 (02): : 151 - 154
  • [32] Local Limits of Graphs
    Benjamini, Itai
    COARSE GEOMETRY AND RANDOMNESS: ECOLE D'ETE DE PROBABILITES DE SAINT-FLOUR XLI - 2011, 2013, 2100 : 41 - 51
  • [33] On the local colorings of graphs
    Omoomi, Behnaz
    Pourmiri, Ali
    ARS COMBINATORIA, 2008, 86 : 147 - 159
  • [34] LOCAL OPTIMIZATION ON GRAPHS
    LLEWELLYN, DC
    TOVEY, C
    TRICK, M
    DISCRETE APPLIED MATHEMATICS, 1989, 23 (02) : 157 - 178
  • [35] On local connectivity of graphs
    Volkmann, Lutz
    APPLIED MATHEMATICS LETTERS, 2008, 21 (01) : 63 - 66
  • [36] On a local similarity of graphs
    Dzido, Tomasz
    Krzywdzinski, Krzysztof
    DISCRETE MATHEMATICS, 2015, 338 (06) : 983 - 989
  • [37] LOCAL EXPANSIONS ON GRAPHS
    CHARATONIK, JJ
    MIKLOS, S
    FUNDAMENTA MATHEMATICAE, 1981, 113 (03) : 235 - 252
  • [38] Local Resilience of Graphs
    Sudakov, Benny
    Vu, V. H.
    RANDOM STRUCTURES & ALGORITHMS, 2008, 33 (04) : 409 - 433
  • [39] Local colorings of graphs
    Chartrand, G
    Saba, F
    Salehi, E
    Zhang, P
    UTILITAS MATHEMATICA, 2005, 67 : 107 - 120
  • [40] ON LOCAL COMPLEMENTATIONS OF GRAPHS
    FONDERFLAAS, DG
    COMBINATORICS /, 1988, 52 : 257 - 266