Wet Spinning and Structure Analysis of α-1,3-Glucan Regenerated Fibers

被引:10
|
作者
Togo, Azusa [1 ]
Suzuki, Shiori [1 ]
Kimura, Satoshi [1 ,2 ,3 ]
Iwata, Tadahisa [1 ]
机构
[1] Univ Tokyo, Grad Sch Agr & Life Sci, Dept Biomat Sci, Sci Polymer Mat, Tokyo 1138657, Japan
[2] Univ Tokyo, Technol Adv Ctr, Grad Sch Agr & Life Sci, Tokyo 1138657, Japan
[3] Kyung Hee Univ, Dept Plant & Environm New Resources, Coll Life Sci, Yongin 446701, Gyeonggi Do, South Korea
基金
日本学术振兴会;
关键词
wet spinning; regenerated fibers; polysaccharides; alpha-1,3-glucan; crystal structure; CELLULOSE; POLYSACCHARIDES; PENICILLIUM;
D O I
10.1021/acsapm.1c00114
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Because of the increasing concerns related to fiber wastes resulting from non-biodegradable plastics and their impact in terms of environmental pollution, the demand for the development of biodegradable fibers has increased. Regenerated fibers of polysaccharides are expected as biomass fibers because of their biodegradability and structural variety. In this study, a linear polysaccharide synthesized by in vitro enzymatic polymerization, alpha-1,3-glucan, was wet-spun using 8% (w/w) lithium chloride in a dimethylacetamide solution. When ethanol (EtOH) was used in the coagulation bath, the resulting fibers were transparent, flexible, and dense, whereas the fibers produced with water in the coagulation bath were translucent, brittle, and aggregated. The former regenerated fibers exhibited tensile strength (11 cN/tex, 138 MPa), elongation at break (12%), and Young's modulus (3.5 GPa). The X-ray fiber diagram of the regenerated fibers coagulated in EtOH showed that the fibers were well-oriented along the fiber axis. The crystalline structure was determined to consist of a twofold helix with crystal lattice parameters of a = 1.59 nm, b = 0.976 nm, and c (fiber axis) = 0.852 nm.
引用
收藏
页码:2063 / 2069
页数:7
相关论文
共 50 条
  • [21] Function and Biosynthesis of Cell Wall α-1,3-Glucan in Fungi
    Yoshimi, Akira
    Miyazawa, Ken
    Abe, Keietsu
    [J]. JOURNAL OF FUNGI, 2017, 3 (04)
  • [22] Ibrexafungerp: An orally active β-1,3-glucan synthesis inhibitor
    Apgar, James M.
    Wilkening, Robert R.
    Parker, Dann L., Jr.
    Meng, Dongfang
    Wildonger, Kenneth J.
    Sperbeck, Donald
    Greenlee, Mark L.
    Balkovec, James M.
    Flattery, Amy M.
    Abruzzo, George K.
    Galgoci, Andrew M.
    Giacobbe, Robert A.
    Gill, Charles J.
    Hsu, Ming-Jo
    Liberator, Paul
    Misura, Andrew S.
    Motyl, Mary
    Kahn, Jennifer Nielsen
    Powles, Maryann
    Racine, Fred
    Dragovic, Jasminka
    Fan, Weiming
    Kirwan, Robin
    Lee, Shu
    Liu, Hao
    Mamai, Ahmed
    Nelson, Kingsley
    Peel, Michael
    [J]. BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2021, 32
  • [23] A pattern-recognition protein for β-1,3-glucan -: The binding domain and the cDNA cloning of β-1,3-glucan recognition protein from the silkworm, Bombyx mori
    Ochiai, M
    Ashida, M
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (07) : 4995 - 5002
  • [24] The recognition mechanism of triple-helical β-1,3-glucan by a β-1,3-glucanase
    Qin, Zhen
    Yang, Dong
    You, Xin
    Liu, Yu
    Hu, Songqing
    Yan, Qiaojuan
    Yang, Shaoqing
    Jiang, Zhengqiang
    [J]. CHEMICAL COMMUNICATIONS, 2017, 53 (67) : 9368 - 9371
  • [25] Continuous Wet Spinning of Regenerated Silk Fibers from Spinning Dopes Containing 4% Fibroin Protein
    Woeltje, Michael
    Isenberg, Kristin L.
    Cherif, Chokri
    Aibibu, Dilbar
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (17)
  • [26] Coarse-grained molecular dynamics simulations of α-1,3-glucan
    Beltran-Villegas, Daniel J.
    Intriago, Daniel
    Kim, Kyle H. C.
    Behabtu, Natnael
    Londono, J. David
    Jayaraman, Arthi
    [J]. SOFT MATTER, 2019, 15 (23) : 4669 - 4681
  • [27] Application toward Drug Delivery System Using β-1,3-Glucan
    Maegawa, Yoshiya
    Mochizuki, Shinichi
    Miyamoto, Noriko
    Sanada, Yusuke
    Sakurai, Kazuo
    [J]. TRENDS IN GLYCOSCIENCE AND GLYCOTECHNOLOGY, 2015, 27 (153) : 13 - 29
  • [28] Antifungal activity of semisynthetic β-1,3-glucan synthase (GS) inhibitors
    Peel, M.
    Pacofsky, G.
    Fan, W.
    Mamai, A.
    Nelson, K.
    Balkovec, J.
    Flattery, A.
    Giaccobe, R.
    Nielsen-Kahn, J.
    Liberator, P.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [29] Structural insights into β-1,3-glucan cleavage by a glycoside hydrolase family
    Santos, Camila R.
    Costa, Pedro A. C. R.
    Vieira, Plinio S.
    Gonzalez, Sinkler E. T.
    Correa, Thamy L. R.
    Lima, Evandro A.
    Mandelli, Fernanda
    Pirolla, Renan A. S.
    Domingues, Mariane N.
    Cabral, Lucelia
    Martins, Marcele P.
    Cordeiro, Rosa L.
    Junior, Atilio T.
    Souza, Beatriz P.
    Prates, Erica T.
    Gozzo, Fabio C.
    Persinoti, Gabriela F.
    Skaf, Munir S.
    Murakami, Mario T.
    [J]. NATURE CHEMICAL BIOLOGY, 2020, 16 (08) : 920 - +
  • [30] Meltable fatty acid esters of α-1,3-glucan as potential thermoplastics
    Geitel, Katja
    Koschella, Andreas
    Lenges, Christian
    Heinze, Thomas
    [J]. Advanced Industrial and Engineering Polymer Research, 2020, 3 (03): : 111 - 119