Conceptual design of a CO2 capture and utilisation process based on calcium and magnesium rich brines

被引:31
|
作者
Galvez-Martos, Jose-Luis [2 ]
Elhoweris, Ammar [1 ]
Morrison, Jennie [3 ]
Al-horr, Yousef [1 ]
机构
[1] QSTP, Gulf Org Res & Dev, Tech 1,Level 2,Suite 203,POB 210162, Doha, Qatar
[2] IMDEA Energy, Syst Anal Unit, Mostoles 28935, Spain
[3] Univ Aberdeen, Dept Chem, Meston Bldg, Aberdeen AB24 3UE, Scotland
关键词
Carbon capture and utilization; Nesquehonite; Construction materials; Desalination brine; CARBON-DIOXIDE; MINERAL CARBONATION; STEELMAKING SLAGS; SEQUESTRATION; CRYSTALLIZATION; NESQUEHONITE; PRODUCE; STORAGE; MODEL; MG;
D O I
10.1016/j.jcou.2018.07.011
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Carbon capture and utilisation processes, CCU, are those processes aiming to produce usable products from CO2 based materials. Although there are a large number of CCU alternatives, only a few are able to propose routes for the massive production of marketable CO2 based products with a negative or neutral carbon footprint in the long term. In this work, a conceptual design of a process aimed to produce a cementitious construction material, based on magnesium carbonate trihydrate, also known as nesquehonite, is discussed and experimentally tested. Desalination brines are proposed as the source of aqueous magnesium. However, these brines contain a non-negligible amount of calcium, which interferes in the development of cementitious properties from nesquehonite. In order to avoid this interference, a multi-stage precipitation is proposed, where calcium carbonate precipitates in a first stage, and pure nesquehonite can be obtained in a second stage. A thermodynamic model, based on empirical observations from the precipitation system, is proposed and the technical feasibility of three process alternatives are evaluated against the outcomes from the model. The preferred alternative, from the technical and economic point of view, is to conduct a full absorption of CO2 as aqueous carbonate, which is then split in two streams for both precipitation stages. The advantage of this alternative is the applicability to different types of brines, the probably faster and more economic absorption stage, and the easier control of the reaction conditions, as pH and temperature.
引用
收藏
页码:161 / 169
页数:9
相关论文
共 50 条
  • [41] Process design and utilisation strategy for CO2 capture in flue gases. Technical assessment and preliminary economic approach for steel mills
    Navarro, J. C.
    Baena-Moreno, F. M.
    Centeno, M. A.
    Laguna, O. H.
    Almagro, J. F.
    Odriozola, J. A.
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2023, 184
  • [42] Development of a conceptual process for CO2 capture from flue gases using ionic liquid
    Nguyen, Tuan B. H.
    Reisemann, Stefan G.
    Zondervan, Edwin
    27TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT C, 2017, 40C : 2623 - 2628
  • [43] Separating the debate on CO2 utilisation from carbon capture and storage
    Bruhn, Thomas
    Naims, Henriette
    Olfe-Kraeutlein, Barbara
    ENVIRONMENTAL SCIENCE & POLICY, 2016, 60 : 38 - 43
  • [44] Simulation of a calcium looping CO2 capture process for pressurized fluidized bed combustion
    Duhoux, Benoit
    Symonds, Robert T.
    Hughes, Robin
    Mehrani, Poupak
    Anthony, Edward J.
    Macchi, Arturo
    CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2020, 98 (01): : 75 - 83
  • [45] CO2 capture in cement plants by "Tail-End" Calcium Looping process
    De Lena, E.
    Spinelli, M.
    Romano, M. C.
    ATI 2018 - 73RD CONFERENCE OF THE ITALIAN THERMAL MACHINES ENGINEERING ASSOCIATION, 2018, 148 : 186 - 193
  • [46] Effect of milling mechanism on the CO2 capture performance of limestone in the Calcium Looping process
    Valverde, Jose Manuel (jmillan@us.es), 1600, Elsevier B.V., Netherlands (346):
  • [47] Effect of milling mechanism on the CO2 capture performance of limestone in the Calcium Looping process
    Benitez-Guerrero, Monica
    Manuel Valverde, Jose
    Perejon, Antonio
    Sanchez-Jimenez, Pedro E.
    Perez-Maqueda, Luis A.
    CHEMICAL ENGINEERING JOURNAL, 2018, 346 : 549 - 556
  • [48] Analysis of a double calcium loop process configuration for CO2 capture in cement plants
    Diego, M. E.
    Arias, B.
    Abanades, J. C.
    JOURNAL OF CLEANER PRODUCTION, 2016, 117 : 110 - 121
  • [49] Single Process for CO2 Capture and Mineralization in Various Alkanolamines Using Calcium Chloride
    Arti, Murnandari
    Youn, Min Hye
    Park, Ki Tae
    Kim, Hak Joo
    Kim, Young Eun
    Jeong, Soon Kwan
    ENERGY & FUELS, 2017, 31 (01) : 763 - 769
  • [50] Sorption-enhanced reactions as enablers for CO2 capture and utilisation
    Boon, Jurriaan
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2023, 40