On the ratio between the maximum weight of a perfect matching and the maximum weight of a matching

被引:0
|
作者
Mazzuoccolo, Giuseppe [1 ]
Mella, Lorenzo [1 ]
机构
[1] Univ Verona, Dipartimento Informat, Str Grazie 15, I-37134 Verona, Italy
关键词
Perfect matching; Maximal matching; Cubic graph;
D O I
10.1016/j.dam.2021.05.009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite graph (without loops and multiple edges) and let w : E(G) -> [0,+infinity) be a weight function on the edge set of G. We consider the ratio between the maximum weight of a perfect matching of G and the maximum weight of a matching of G. The parameter eta(G), introduced by Brazil & al. in Brazil et al. (2016), is defined as the minimum of such a ratio among all nonnegative edge weight assignments of G. In the present paper, we propose a way to compute a lower bound for the parameter eta(G), and we use it to prove that for every rational number q in the interval [0, 1] there exists a graph G such that eta(G) = q. Moreover, we further use the same method, in combination with some new arguments, to establish the value of eta for Prism graphs and Mobius Ladders. Finally, we improve known results for Blanusa Snarks B-1 and B-2 by determining the exact value of eta(B-1) and eta(B-2). (C) 2021 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:19 / 25
页数:7
相关论文
共 50 条
  • [21] Maximum Weight Matching based Heuristic for Future HetNets Greening
    Ameur, Hocine
    Esseghir, Moez
    Khoukhi, Lyes
    2016 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, 2016,
  • [22] Maximum weight induced matching in some subclasses of bipartite graphs
    Panda, B. S.
    Pandey, Arti
    Chaudhary, Juhi
    Dane, Piyush
    Kashyap, Manav
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 40 (03) : 713 - 732
  • [23] Multiplicative auction algorithm for approximate maximum weight bipartite matching
    Zheng, Da Wei
    Henzinger, Monika
    MATHEMATICAL PROGRAMMING, 2024, 210 (1) : 881 - 894
  • [24] Maximum weight induced matching in some subclasses of bipartite graphs
    B. S. Panda
    Arti Pandey
    Juhi Chaudhary
    Piyush Dane
    Manav Kashyap
    Journal of Combinatorial Optimization, 2020, 40 : 713 - 732
  • [25] Max-Product for Maximum Weight Matching-Revisited
    Holldack, Mario
    2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, : 1236 - 1240
  • [26] MAXIMUM MATCHING OF GIVEN WEIGHT IN COMPLETE AND COMPLETE BIPARTITE GRAPHS
    KARZANOV, AV
    CYBERNETICS, 1987, 23 (01): : 8 - 13
  • [27] Multiplicative Auction Algorithm for Approximate Maximum Weight Bipartite Matching
    Zheng, Da Wei
    Henzinger, Monika
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2023, 2023, 13904 : 453 - 465
  • [28] Approximations to maximum weight matching scheduling algorithms of low complexity
    Bauer, C
    TELECOMMUNICATIONS 2005, PROCEEDINGS, 2005, : 300 - 305
  • [29] Approximating Maximum Weight Matching in Near-linear Time
    Duan, Ran
    Pettie, Seth
    2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 673 - 682
  • [30] Multiplicative auction algorithm for approximate maximum weight bipartite matching
    Zheng, Da Wei
    Henzinger, Monika
    Mathematical Programming, 2024,