Machine Learning-Assisted Sensor Array Based on Poly(amidoamine) (PAMAM) Dendrimers for Diagnosing Alzheimer?sDisease

被引:27
|
作者
Xu, Lian [1 ,2 ]
Wang, Hao [1 ,2 ]
Xu, Yu [1 ,2 ]
Cui, Wenyu [1 ,2 ]
Ni, Weiwei [1 ,2 ]
Chen, Mingqi [1 ,2 ]
Huang, Hui [3 ]
Stewart, Callum [3 ]
Li, Linxian [3 ]
Li, Fei [1 ,2 ]
Han, Jinsong [1 ,2 ]
机构
[1] China Pharmaceut Univ, State Key Lab Nat Med, Coll Engn, Nanjing 211109, Peoples R China
[2] China Pharmaceut Univ, Natl R&D Ctr Chinese Herbal Med Proc, Coll Engn, Dept Food Qual & Safety, Nanjing 211109, Peoples R China
[3] Karolinska Inst, Ming Wai Lau Ctr Reparat Med, S-17177 Stockholm, Sweden
来源
ACS SENSORS | 2022年 / 7卷 / 05期
基金
中国国家自然科学基金;
关键词
Alzheimer?s disease; PAMAM dendrimers; sensor array; machine learning algorithm; linear discriminant analysis; amyloid-?protein; AMYLOID-BETA; PROTEIN; BACTERIA; IDENTIFICATION; FLUORESCENCE; A-BETA(40); PROBE; MASS;
D O I
10.1021/acssensors.2c00132
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Alzheimer's disease (AD) is the most prevalentneurodegenerative disorder, and the early diagnosis of AD remainschallenging. Here we have developed afluorescent sensor arraycomposed of three modified polyamidoamine dendrimers. Proteins ofvarious properties were differentiated via this array with 100%accuracy, proving the rationality of the array's design. The mechanismof thefluorescence response was discussed. Furthermore, the robustthree-element array enables parallel detection of multiple A beta 40/A beta 42aggregates (0.5 mu M) in diverse interferents, serum media, andcerebrospinalfluid (CSF) with high accuracy, through machinelearning algorithms, demonstrating the tremendous potential of thesensor array in Alzheimer's disease diagnosis.
引用
收藏
页码:1315 / 1322
页数:8
相关论文
共 50 条
  • [31] Machine Learning-Assisted Nanoenzyme/Bioenzyme Dual-Coupled Array for Rapid Detection of Amyloids
    Xu, Yu
    Qian, Cheng
    Yu, Yang
    Yang, Shijie
    Shi, Fangfang
    Gao, Xu
    Liu, Yuhang
    Huang, Hui
    Stewart, Callum
    Li, Fei
    Han, Jinsong
    ANALYTICAL CHEMISTRY, 2023, 95 (10) : 4605 - 4611
  • [32] Machine learning-assisted array from fluorescent conjugated microporous polymers for multiple explosives recognition
    Gao, Ruru
    Xiu-Shen Wei
    Zhao, Wei
    Xie, Aming
    Dong, Wei
    ANALYTICA CHIMICA ACTA, 2022, 1192
  • [33] Design of Zero Clearance SIW Endfire Antenna Array Using Machine Learning-Assisted Optimization
    Zhang, Jin
    Akinsolu, Mobayode O.
    Liu, Bo
    Zhang, Shuai
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2022, 70 (05) : 3858 - 3863
  • [34] Machine learning-assisted wearable triboelectric-electromagnetic sensor for monitoring human motion feature
    Zhao, Leilei
    Jia, Shouchuang
    Fang, Chenyu
    Qin, Binyu
    Hu, Yunzi
    Yang, Xiya
    CHEMICAL ENGINEERING JOURNAL, 2025, 503
  • [35] Machine learning-assisted substrate binding pocket engineering based on structural information
    Wang, Xinglong
    Xu, Kangjie
    Zeng, Xuan
    Kai Linghu
    Zhao, Beichen
    Yu, Shangyang
    Wang, Kun
    Yu, Shuyao
    Zhao, Xinyi
    Zeng, Weizhu
    Wang, Kai
    Zhou, Jingwen
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (05)
  • [36] Machine Learning-Assisted Gesture Sensor Made with Graphene/Carbon Nanotubes for Sign Language Recognition
    Shen, Hao-Yuan
    Li, Yu-Tao
    Liu, Hang
    Lin, Jie
    Zhao, Lu-Yu
    Li, Guo-Peng
    Wu, Yi-Wen
    Ren, Tian-Ling
    Wang, Yeliang
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (39) : 52911 - 52920
  • [37] Non-destructive methodology for crack detection using machine learning-assisted resonant sensor
    Srivastava, Rajat
    Vaishnav, Ajay
    Kale, S. N.
    MEASUREMENT, 2024, 229
  • [38] Machine learning-assisted prediction of pneumonia based on non-invasive measures
    Effah, Clement Yaw
    Miao, Ruoqi
    Drokow, Emmanuel Kwateng
    Agboyibor, Clement
    Qiao, Ruiping
    Wu, Yongjun
    Miao, Lijun
    Wang, Yanbin
    FRONTIERS IN PUBLIC HEALTH, 2022, 10
  • [39] Machine learning-assisted design and prediction of materials for batteries based on alkali metals
    Si, Kexin
    Sun, Zhipeng
    Song, Huaxin
    Jiang, Xiangfen
    Wang, Xuebin
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2025, 27 (11) : 5423 - 5442
  • [40] Testing and Tuning of RRAM-Based DNNs: A Machine Learning-Assisted Approach
    Ma, Kwondo
    Saha, Anurup
    Komarraju, Suhasini
    Amarnath, Chandramouli
    Chatterjee, Abhijit
    2024 IEEE 67TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, MWSCAS 2024, 2024, : 688 - 692