The roots and tops of magnetite-apatite mineralization: evolving magmatic-hydrothermal systems

被引:0
|
作者
Tornos, Fernando
Hanchar, John M.
Velasco, Francisco
Munizaga, Rodrigo
Levresse, Gilles
机构
关键词
SILICA-RICH MELTS; EL LACO; IRON; ORIGIN; OXIDE; DEPOSITS; KIRUNA;
D O I
暂无
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Magnetite-apatite deposits form a well-defined type of mineralization characterized by the presence of a core of massive magnetite apatite with an extensive aureole of alkali-calcic alteration hosting a low grade mineralization. Geology and geochemistry suggest that these deposits are the product of the crystallization of oxidized water-bearing iron-rich melts that separated from a parental silicate magma. The temporal and vertical evolution of these systems is controlled by the timing and depth of separation of large amounts of aqueous fluids, a process that leads to the formation of complex magmatic-hydrothermal systems. These magnetite-apatite systems grade upwards into bodies of massive apatite or an extrusive magnetite-apatite mineralization. A key feature of this style of mineralization is the formation of large breccia pipes and diatremes that are related to melt degassing at shallow depths.
引用
收藏
页码:831 / 834
页数:4
相关论文
共 50 条
  • [21] Challenges in dating magmatic-hydrothermal events of porphyry systems
    Chiaradia, Massimo
    Schuette, Philip
    LET'S TALK ORE DEPOSITS, VOLS I AND II, 2011, : 148 - 150
  • [22] Magmatic-Hydrothermal Mineral Formation Systems: A Geological Study
    Aparicio, Jhoshua U.
    17TH BIENNIAL SGA MEETING, 2023, VOL 1, 2023, : 212 - 213
  • [23] Sulfur Isotopes in Magmatic-Hydrothermal Systems, Melts, and Magmas
    Marini, Luigi
    Moretti, Roberto
    Accornero, Marina
    SULFUR IN MAGMAS AND MELTS: ITS IMPORTANCE FOR NATURAL AND TECHNICAL PROCESSES, 2011, 73 : 423 - 492
  • [24] Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes
    Knipping, Jaayke L.
    Bilenker, Laura D.
    Simon, Adam C.
    Reich, Martin
    Barra, Fernando
    Deditius, Artur P.
    Waelle, Markus
    Heinrich, Christoph A.
    Holtz, Francois
    Munizaga, Rodrigo
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2015, 171 : 15 - 38
  • [25] GUATEMALAN LEAD-ZINC MINERALIZATION - MAGMATIC-HYDROTHERMAL OR MISSISSIPPI VALLEY TYPE
    KESLER, SE
    ASCARRUN.RE
    ECONOMIC GEOLOGY, 1972, 67 (07) : 1007 - &
  • [26] Tracking the magmatic-hydrothermal evolution during lithium mineralization with zircon trace elements
    Hu F.
    Yang L.
    Chen G.
    Wu F.
    Dizhi Xuebao/Acta Geologica Sinica, 2024, 98 (05): : 1615 - 1636
  • [27] The Origin and Discrimination of High-Ti Magnetite in Magmatic-Hydrothermal Systems: Insight from Machine Learning Analysis
    Hu, Bin
    Zeng, Li-Ping
    Liao, Wang
    Wen, Guang
    Hu, Hao
    Li, Martin Yan Hei
    Zhao, Xin-Fu
    ECONOMIC GEOLOGY, 2022, 117 (07) : 1613 - 1627
  • [28] Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks: examples from Kiruna, Sweden, and El Laco, Chile
    Shannon G. Broughm
    John M. Hanchar
    Fernando Tornos
    Anne Westhues
    Samuel Attersley
    Mineralium Deposita, 2017, 52 : 1223 - 1244
  • [29] Subaerial explosive deposition of magnetite-apatite mineralization: The Artillero deposit, Pena Colorada district, Colima, Mexico
    Levresse, Gilles
    Tornos, Fernando
    Velasco, Francisco
    Corona-Esquivel, Rodolfo
    ORE GEOLOGY REVIEWS, 2020, 126
  • [30] Critical minerals in Climax-type magmatic-hydrothermal systems
    Mercer, Celestine N.
    Guzman, Mario
    Hofstra, Albert H.
    Rosera, Joshua M.
    17TH BIENNIAL SGA MEETING, 2023, VOL 1, 2023, : 274 - 277