Restricted total domination in graphs

被引:10
|
作者
Henning, MA [1 ]
机构
[1] Univ KwaZulu Natal, Sch Math Stat & Informat Technol, ZA-3209 Pietermaritzburg, South Africa
关键词
bounds; restricted total domination number; total dominating set;
D O I
10.1016/j.disc.2004.09.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The k-restricted total domination number of a graph G is the smallest integer r(k) (G, y(t)) such that given any subset U of k vertices of G, there exists a total dominating set of G of cardinality at most rk (G, y(t)) containing U. Hence, the k-restricted total domination number of a graph G measures how many vertices are necessary to totally dominate a graph if an arbitrary set of k vertices must be included in the total dominating set. When k = 0, the k-restricted total domination number is the total domination number. In this paper we establish upper bound on the k-restricted total domination number of a connected graph in terms of the order and the size of the graph. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:25 / 44
页数:20
相关论文
共 50 条
  • [21] DOMINATION INTEGRITY OF TOTAL GRAPHS
    Vaidya, S. K.
    Shah, N. H.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2014, 4 (01): : 117 - 126
  • [22] TOTAL ROMAN DOMINATION IN GRAPHS
    Ahangar, Hossein Abdollahzadeh
    Henning, Michael A.
    Samodivkin, Vladimir
    Yero, Ismael G.
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) : 501 - 517
  • [23] Chromatic total domination in graphs
    Balamurugan, S.
    Anitha, M.
    Eswari, M. Angala
    Kalaiselvi, S.
    [J]. JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2019, 22 (05): : 745 - 751
  • [24] Total Domination Value in Graphs
    Kang, Cong X.
    [J]. UTILITAS MATHEMATICA, 2014, 95 : 263 - 279
  • [25] Weak Total Domination in Graphs
    Chellali, Mustapha
    Rad, Nader Jafari
    [J]. UTILITAS MATHEMATICA, 2014, 94 : 221 - 236
  • [26] Eternal Total Domination in Graphs
    Klostermeyer, William F.
    Mynhardt, C. M.
    [J]. ARS COMBINATORIA, 2012, 107 : 473 - 492
  • [27] On the total domination number of graphs
    Lam, Peter Che Bor
    Wei, Bing
    [J]. UTILITAS MATHEMATICA, 2007, 72 : 223 - 240
  • [28] Transversal total domination in graphs
    Nayaka, S.R.
    Alwardi, Anwar
    Puttaswamy
    [J]. 1600, Charles Babbage Research Centre (112): : 231 - 240
  • [29] Total mixed domination in graphs
    Kazemi, Adel P.
    Kazemnejad, Farshad
    Moradi, Somayeh
    [J]. AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2022, 19 (03) : 229 - 237
  • [30] Disjunctive total domination in graphs
    Henning, Michael A.
    Naicker, Viroshan
    [J]. JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (03) : 1090 - 1110