Competitive Hopfield neural network for stereo vision correspondence

被引:0
|
作者
Mayoral, R [1 ]
Pérez-Ilzarbe, MJ [1 ]
机构
[1] Univ Publ Navarra, Dept Automat & Computac, E-31006 Pamplona, Spain
关键词
D O I
10.1109/IJCNN.2000.861513
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
For the correspondence problem in stereo vision, we developed an Hopfield algorithm that favors unicity of the matches for all interest points both on the left and right images. Although the convergence of the network used cannot be theoretically proven, we have experimentally shown that for the cases we are interested in the method converges either to a stable state or to an acceptable limit cycle. The method is computationally fast.
引用
收藏
页码:464 / 469
页数:6
相关论文
共 50 条
  • [41] Two-layer competitive Hopfield neural network for wafer defect detection
    Chang, CY
    Lin, SY
    Jeng, MD
    [J]. 2005 IEEE NETWORKING, SENSING AND CONTROL PROCEEDINGS, 2005, : 1058 - 1063
  • [42] Relaxation by Hopfield network in stereo image matching
    Pajares, G
    Cruz, JM
    Aranda, J
    [J]. PATTERN RECOGNITION, 1998, 31 (05) : 561 - 574
  • [43] Computer vision-based object-recognition by a Hopfield neural network
    Chen, Ching-Shun
    Chen, Mao-Lin
    [J]. Zhongguo Hangkong Taikong Xuehui Huikan/Transactions of the Aeronautical and Astronautical Society of the Republic of China, 2002, 34 (01): : 31 - 37
  • [44] Neural architectures for stereo vision
    Parker, Andrew J.
    Smith, Jackson E. T.
    Krug, Kristine
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2016, 371 (1697)
  • [45] Absolute stereo SFM without stereo correspondence for vision based SLAM
    Kim, JH
    Chung, MJ
    [J]. 2005 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-4, 2005, : 3360 - 3365
  • [46] Stereo vision using a microcanonical mean field annealing neural network
    Huang, JS
    Liu, HC
    [J]. NETWORK-COMPUTATION IN NEURAL SYSTEMS, 1997, 8 (01) : 87 - 104
  • [47] Tool wear evaluation by stereo vision and prediction by artificial neural network
    Prasad, KN
    Ramamoorthy, B
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2001, 112 (01) : 43 - 52
  • [48] Stereo Vision aided Image Dehazing using Deep Neural Network
    Na, Jeong-Yun
    Yoon, Kuk-Jin
    [J]. PROCEEDINGS OF THE 1ST WORKSHOP AND CHALLENGE ON COMPREHENSIVE VIDEO UNDERSTANDING IN THE WILD (COVIEW'18), 2018, : 15 - 19
  • [49] A cellular neural network stereo vision system for autonomous robot navigation
    Zanela, A
    Taraglio, S
    [J]. PROCEEDINGS OF THE 2000 6TH IEEE INTERNATIONAL WORKSHOP ON CELLULAR NEURAL NETWORKS AND THEIR APPLICATIONS (CNNA 2000), 2000, : 117 - 122
  • [50] Designing Compact Convolutional Neural Network for Embedded Stereo Vision Systems
    Loni, Mohammad
    Majd, Amin
    Loni, Abdolah
    Daneshtalab, Masoud
    Sjodin, Mikael
    Troubitsyna, Elena
    [J]. 2018 IEEE 12TH INTERNATIONAL SYMPOSIUM ON EMBEDDED MULTICORE/MANY-CORE SYSTEMS-ON-CHIP (MCSOC 2018), 2018, : 244 - 251