Finite exact branch-and-bound algorithms for concave minimization over polytopes

被引:17
|
作者
Locatelli, M
Thoai, NV
机构
[1] Univ Florence, Dipartimento Sistemi & Informat, I-50139 Florence, Italy
[2] Univ Trier, Dept Math, D-54286 Trier, Germany
关键词
concave minimization problems; branch-and-bound; local searches; concavity cuts;
D O I
10.1023/A:1008324430471
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper simplicial branch-and-bound algorithms for concave minimization problems are discussed. Some modifications of the basic algorithm are presented, mainly consisting in rules to start local searches, introduction of cuts and updates of the original objective function. While some of these tools are not new in the literature, it is the first time, to the authors' knowledge, that they are used to guarantee the finiteness of a simplicial branch-and-bound approach.
引用
收藏
页码:107 / 128
页数:22
相关论文
共 50 条
  • [21] Genetic Branch-and-Bound or exact genetic algorithm?
    Pessan, C.
    Bouquard, J. -L.
    Neron, E.
    ARTIFICIAL EVOLUTION, 2008, 4926 : 136 - 147
  • [23] NORMAL CONICAL ALGORITHM FOR CONCAVE MINIMIZATION OVER POLYTOPES
    TUY, H
    MATHEMATICAL PROGRAMMING, 1991, 51 (02) : 229 - 245
  • [24] Hill-climbing and branch-and-bound algorithms for exact and approximate inference in credal networks
    Cano, Andres
    Gomez, Manuel
    Moral, Serafin
    Abellan, Joaquin
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2007, 44 (03) : 261 - 280
  • [25] Hill-climbing and branch-and-bound algorithms for exact and approximate inference in credal networks
    Cano, Andrés
    Gómez, Manuel
    Moral, Serafín
    Abellán, Joaquín
    International Journal of Approximate Reasoning, 2007, 44 (03): : 261 - 280
  • [26] CONVERGENCE AND RESTART IN BRANCH-AND-BOUND ALGORITHMS FOR GLOBAL OPTIMIZATION. APPLICATION TO CONCAVE MINIMIZATION AND D. C. OPTIMIZATION PROBLEMS.
    Tuy, Hoang
    Horst, Reiner
    Mathematical Programming, Series B, 1988, 41 (01): : 161 - 183
  • [27] POWER OF DOMINANCE RELATIONS IN BRANCH-AND-BOUND ALGORITHMS
    IBARAKI, T
    JOURNAL OF THE ACM, 1977, 24 (02) : 264 - 279
  • [28] COPING WITH ANOMALIES IN PARALLEL BRANCH-AND-BOUND ALGORITHMS
    LI, GJ
    WAH, BW
    IEEE TRANSACTIONS ON COMPUTERS, 1986, 35 (06) : 568 - 573
  • [29] Probabilistic subproblem selection in branch-and-bound algorithms
    Dür, M
    Stix, V
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 182 (01) : 67 - 80
  • [30] Branch-and-bound algorithms for the test cover problem
    De Bontridder, KMJ
    Lageweg, BJ
    Lenstra, JK
    Orlin, JB
    Stougie, L
    ALGORITHMS-ESA 2002, PROCEEDINGS, 2002, 2461 : 223 - 233