Critical soil water levels for soil microscale processes are difficult to determine because of variability in large soil volumes and lack of techniques for logging soil water contents in small soil volumes. This study tested vari-infrared (NIR) spectroscopy for soil water content determination. Five soil horizons with a range in soil texture, soil organic carbon, carbonates, pH and horizon depth, were tested at air-dry, field capacity and 0.1 MPa tension water content. Volumetric soil water content, determined using the standard method of oven-drying and soil bulk density, was compared to NIR absorbance in various combinations and wavelengths. The NIR spectra obtained with the probe in direct contact with the soil gave better results than when the probe was separated from the soil with a glass slide. The most reliable validation results were obtained using a multivariate partial least squares regression of the full spectrum with an r(2) of 0.95 and RMSE of prediction of 6.4%. Smoothing and derivatives of the spectra did not improve the validation results. The relationships for absorbance at single wavelength segments, ratios, differences and area under the curve around the 1940 nm peak were good (r(2) values near 0.85) but poorer than the results using the full spectra. The high correlation coefficients obtained with the wide variety of soils utilized in this study suggest that NIR absorbance is a practical method for determining volumetric soil water content for small soil volumes.