Parametric modal regression with varying precision

被引:12
|
作者
Bourguignon, Marcelo [1 ]
Leao, Jeremias [2 ]
Gallardo, Diego I. [3 ]
机构
[1] Univ Fed Rio Grande do Norte, Dept Estat, Natal, RN, Brazil
[2] Univ Fed Amazonas, Dept Estat, Manaus, AM, Brazil
[3] Univ Atacama, Fac Ingn, Dept Matemat, Copiapo, Chile
关键词
gamma distribution; linear regression; modal regression; parametric regression; FINITE MIXTURES; INSURANCE; MODELS;
D O I
10.1002/bimj.201900132
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we propose a simple parametric modal linear regression model where the response variable is gamma distributed using a new parameterization of this distribution that is indexed by mode and precision parameters, that is, in this new regression model, the modal and precision responses are related to a linear predictor through a link function and the linear predictor involves covariates and unknown regression parameters. The main advantage of our new parameterization is the straightforward interpretation of the regression coefficients in terms of the mode of the positive response variable, as is usual in the context of generalized linear models, and direct inference in parametric mode regression based on the likelihood paradigm. Furthermore, we discuss residuals and influence diagnostic tools. A Monte Carlo experiment is conducted to evaluate the performances of these estimators in finite samples with a discussion of the results. Finally, we illustrate the usefulness of the new model by two applications, to biology and demography.
引用
收藏
页码:202 / 220
页数:19
相关论文
共 50 条
  • [1] Parametric modal regression with error in covariates
    Liu, Qingyang
    Huang, Xianzheng
    [J]. BIOMETRICAL JOURNAL, 2024, 66 (01)
  • [2] A flexible count regression model with varying precision
    Lemonte, Artur J.
    [J]. APPLIED MATHEMATICAL MODELLING, 2024, 131 : 559 - 569
  • [3] A collection of parametric modal regression models for bounded data
    Menezes, Andre F. B.
    Mazucheli, Josmar
    Chakraborty, Subrata
    [J]. JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2021, 31 (04) : 490 - 506
  • [4] SIMEX estimation in parametric modal regression with measurement error
    Shi, Jianhong
    Zhang, Yujing
    Yu, Ping
    Song, Weixing
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2021, 157
  • [5] Semiparametric partially linear varying coefficient modal regression✩
    Ullah, Aman
    Wang, Tao
    Yao, Weixin
    [J]. JOURNAL OF ECONOMETRICS, 2023, 235 (02) : 1001 - 1026
  • [6] Parametric modal identification of time-varying structures and the validation approach of modal parameters
    Zhou, Si-Da
    Heylen, Ward
    Sas, Paul
    Liu, Li
    [J]. MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2014, 47 (1-2) : 94 - 119
  • [7] Reparameterized inverse gamma regression models with varying precision
    Bourguignon, Marcelo
    Gallardo, Diego, I
    [J]. STATISTICA NEERLANDICA, 2020, 74 (04) : 611 - 627
  • [8] A model for non-parametric spatially varying regression effects
    Congdon, P
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2006, 50 (02) : 422 - 445
  • [9] Reparameterized Birnbaum-Saunders regression models with varying precision
    Santos-Neto, Manoel
    Cysneiros, Francisco Jose A.
    Leiva, Victor
    Barros, Michelli
    [J]. ELECTRONIC JOURNAL OF STATISTICS, 2016, 10 (02): : 2825 - 2855
  • [10] Lomax regression model with varying precision: Formulation, estimation, diagnostics, and application
    Melo, Moizes Da S.
    Loose, Lais H.
    De Carvalho, Jhonnata B.
    [J]. CHILEAN JOURNAL OF STATISTICS, 2021, 12 (02): : 189 - 204