A model for non-parametric spatially varying regression effects

被引:18
|
作者
Congdon, P [1 ]
机构
[1] Queen Mary Univ London, Dept Geog, London E1 4NS, England
关键词
general additive model; spatially varying regression effects; spatial filtering; mixture model;
D O I
10.1016/j.csda.2004.08.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A method for non-parametric regression effects is applied to spatially configured data, using a generalised additive form that allows regression effects to vary over areas. The focus is on discrete outcomes in disease mapping but can be adapted to metric outcomes. Specifically a mixed model is proposed that combines a local general additive model (GAM) element for each area with a spatially filtered GAM effect. Modifications are discussed that allow for the impact of outliers on the spatial regression. The paper uses a Bayesian approach that places random walk priors on the various smooth functions, Gamma priors on inverse scale parameters and Dirichlet priors on mixing parameters. The model is illustrated with applications to lip cancer mortality in Scottish counties, where there is one predictor with regression impact modelled non-parametrically, and suicide deaths in 32 London boroughs, where two predictors are taken to follow a spatial GAM form. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:422 / 445
页数:24
相关论文
共 50 条
  • [1] Non-parametric regression for spatially dependent data with wavelets
    Krebs, Johannes T. N.
    [J]. STATISTICS, 2018, 52 (06) : 1270 - 1308
  • [2] Photometric stereo with non-parametric and spatially-varying reflectance
    Alldrin, Neil
    Zickler, Todd
    Kriegman, David
    [J]. 2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 2447 - +
  • [3] Semiparametric hidden Markov model with non-parametric regression
    Huang, Mian
    Ji, Qinghua
    Yao, Weixin
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (21) : 5196 - 5204
  • [4] Non-parametric regression for networks
    Severn, Katie E.
    Dryden, Ian L.
    Preston, Simon P.
    [J]. STAT, 2021, 10 (01):
  • [6] A multi-resolution, non-parametric, Bayesian framework for identification of spatially-varying model parameters
    Koutsourelakis, P. S.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (17) : 6184 - 6211
  • [7] Non-parametric regression methods
    Ince H.
    [J]. Computational Management Science, 2006, 3 (2) : 161 - 174
  • [8] A note on combining parametric and non-parametric regression
    Rahman, M
    Gokhale, DV
    Ullah, A
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1997, 26 (02) : 519 - 529
  • [9] Using Non-Parametric Regression to Model Dormancy Requirements in Almonds
    Jarvis-Shean, K.
    Da Silva, D.
    Willits, N.
    DeJong, T. M.
    [J]. IX INTERNATIONAL SYMPOSIUM ON MODELLING IN FRUIT RESEARCH AND ORCHARD MANAGEMENT, 2015, 1068 : 133 - 140
  • [10] Non-Parametric Regression and Riesz Estimators
    Kountzakis, Christos
    Tsachouridou-Papadatou, Vasileia
    [J]. AXIOMS, 2023, 12 (04)