About the radius of starlikeness of Bessel functions of the first kind

被引:15
|
作者
Szasz, Robert [1 ]
机构
[1] Sapientia Univ, Fac Tech & Human Sci, Dept Math & Informat, Targu Mures, Romania
来源
MONATSHEFTE FUR MATHEMATIK | 2015年 / 176卷 / 02期
关键词
Bessel function; Starlike function; Radius of starlikeness;
D O I
10.1007/s00605-014-0708-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let denote the Bessel function of the first kind. Brown (Univalence of Bessel functions, pp 278-283, 1960) determined the radius of starlikeness for two kind of normalized Bessel functions in the case . We extended these results for in Baricz et al. (The radius of starlikeness of normalized Bessel functions of the first kind, pp 2019-2025, 2014). Now we deal with the case The basic idea of the study is the same as in Baricz et al. (The radius of starlikeness of normalized Bessel functions of the first kind, pp 2019-2025, 2014) and Szasz (On starlikeness of Bessel functions of the first kind, pp 63-70, 2011), but in this case we have a different situation and a different approach is needed.
引用
收藏
页码:323 / 330
页数:8
相关论文
共 50 条
  • [41] New Expansions of Bessel Functions of First Kind and Complex Argument
    Kurup, Dhanesh G.
    Koithyar, Aravinda
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (05) : 2708 - 2713
  • [42] Convexity of ratios of the modified Bessel functions of the first kind with applications
    Zhen-Hang Yang
    Jing-Feng Tian
    Revista Matemática Complutense, 2023, 36 : 799 - 825
  • [43] Monotonicity of the ratio of modified Bessel functions of the first kind with applications
    Yang, Zhen-Hang
    Zheng, Shen-Zhou
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [44] On infinite series concerning zeros of Bessel functions of the first kind
    Giusti, Andrea
    Mainardi, Francesco
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (06):
  • [45] Interferogram smoothing and skelotonizing using Bessel functions of the first kind
    Penalver, Dayana H.
    Romero-Antequera, David L.
    Granados-Agustin, Fermin-Salomon
    OPTICAL ENGINEERING, 2012, 51 (04)
  • [46] Convexity of ratios of the modified Bessel functions of the first kind with applications
    Yang, Zhen-Hang
    Tian, Jing-Feng
    REVISTA MATEMATICA COMPLUTENSE, 2023, 36 (03): : 799 - 825
  • [47] An inequality for the bessel functions of the first kind with imaginary argument.
    Gronwall, TH
    ANNALS OF MATHEMATICS, 1932, 33 : 275 - 278
  • [48] The radius of starlikeness of meromorphic typically real functions
    Dong, JT
    Liu, LQ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 255 (02) : 423 - 435
  • [49] Radius of Limacon starlikeness for Janowski starlike functions
    Kanaga, R.
    Ravichandran, V
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (09)
  • [50] RADIUS OF STARLIKENESS OF CERTAIN ANALYTIC-FUNCTIONS
    ALAMIRI, HS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 42 (02) : 466 - 474