Ion transport in Titan's upper atmosphere

被引:42
|
作者
Cui, J. [1 ]
Galand, M. [1 ]
Yelle, R. V. [2 ]
Wahlund, J. -E. [3 ]
Agren, K. [3 ]
Waite, J. H., Jr. [4 ]
Dougherty, M. K. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Space & Atmospher Phys Grp, Dept Phys, London SW7 2BW, England
[2] Univ Arizona, Lunar & Planetary Lab, Tucson, AZ 85721 USA
[3] Swedish Inst Space Phys, SE-75121 Uppsala, Sweden
[4] SW Res Inst, San Antonio, TX 78228 USA
基金
英国科学技术设施理事会;
关键词
CASSINI ION; IONOSPHERE; VENUS; PLASMA; MODEL; SIMULATION; FLOW;
D O I
10.1029/2009JA014563
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Based on a combined Cassini data set including Ion Neutral Mass Spectrometer, Radio Plasma Wave Science, and Magnetometer measurements made during nine close encounters of the Cassini spacecraft with Titan, we investigate the electron ( or total ion) distribution in the upper ionosphere of the satellite between 1250 and 1600 km. A comparison of the measured electron distribution with that in diffusive equilibrium suggests global ion escape from Titan with a total ion loss rate of similar to(1.7 +/- 0.4) x 10(25) s(-1). Significant diurnal variation in ion transport is implied by the data, characterized by ion outflow at the dayside and ion inflow at the nightside, especially below similar to 1400 km. This is interpreted as a result of day-to-night ion transport, with a horizontal transport rate estimated to be similar to(1.4 +/- 0.5) x 10(24) s(-1). Such an ion flow is likely to be an important source for Titan's nightside ionosphere, as proposed in Cui et al. [2009a].
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Cassini Ion and Neutral Mass Spectrometer data in Titan's upper atmosphere and exosphere: Observation of a suprathermal corona
    De la Haye, V.
    Waite, J. H., Jr.
    Johnson, R. E.
    Yelle, R. V.
    Cravens, T. E.
    Luhmann, J. G.
    Kasprzak, W. T.
    Gell, D. A.
    Magee, B.
    Leblanc, F.
    Michael, M.
    Jurac, S.
    Robertson, I. P.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2007, 112 (A7)
  • [32] The upper atmosphere and ionosphere of Titan:: A coupled model
    Banaszkiewicz, M
    Lara, LM
    Rodrigo, R
    López-Moreno, JJ
    Molina-Cuberos, GJ
    PLANETARY IONOSPHERES AND MAGNETOSPHERES, 2000, 26 (10): : 1547 - 1550
  • [33] A Monte Carlo model of energy deposition, ionization, and sputtering due to thermal ion precipitation into Titan's upper atmosphere
    Snowden, Darci
    Higgins, Alexandre
    ICARUS, 2021, 354
  • [34] Titan's atmosphere and climate
    Horst, S. M.
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2017, 122 (03) : 432 - 482
  • [35] Laboratory generation of hazes in Titan's upper atmosphere using ECR plasma
    Liu, Yu
    Ling, Yiming
    Yang, Zhengbo
    Liu, Xiangqun
    Lei, Jiuhou
    Hao, Jihua
    PLANETARY AND SPACE SCIENCE, 2023, 229
  • [36] Titan's atmosphere - A review
    Lorenz, R
    JOURNAL DE PHYSIQUE IV, 2002, 12 (PR10): : 281 - 292
  • [37] Titan's surface and atmosphere
    Hayes, Alexander G.
    Soderblom, Jason M.
    Adamkovics, Mate
    ICARUS, 2016, 270 : 1 - 1
  • [38] Auroral electron precipitation and flux tube erosion in Titan's upper atmosphere
    Snowden, D.
    Yelle, R. V.
    Galand, M.
    Coates, A. J.
    Wellbrock, A.
    Jones, G. H.
    Lavvas, P.
    ICARUS, 2013, 226 (01) : 186 - 204
  • [39] Haze Seasonal Variations of Titan's Upper Atmosphere during the Cassini Mission
    Seignovert, Benoit
    Rannou, Pascal
    West, Robert A.
    Vinatier, Sandrine
    ASTROPHYSICAL JOURNAL, 2021, 907 (01):
  • [40] Role of photoionization in the formation of complex organic molecules in Titan's upper atmosphere
    Imanaka, Hiroshi
    Smith, Mark A.
    GEOPHYSICAL RESEARCH LETTERS, 2007, 34 (02)