Ab Initio Calculations of Vibrational Frequencies in a Glassy State of Selenium

被引:0
|
作者
Rosli, Ahmad Nazrul [1 ]
Abu Kassim, Hasan [1 ]
Shrivastava, Keshav N. [1 ]
机构
[1] Univ Malaya, Fak Sains, Kuala Lumpur 50603, Malaysia
来源
SAINS MALAYSIANA | 2010年 / 39卷 / 02期
关键词
Density functional theory; glass; raman spectra; selenium; vibrational frequencies;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We used the density functional theory to calculate the vibrational frequencies of clusters of atoms. We obtained the bond distances and angles for which the energy of the Schrodinger equation is minimum. We found the bond distance between two Se atoms to be 232.1 pm when double zeta wave function was used. The frequency of oscillations was calculated to be 325.3 cm(-1) but the intensity was zero because Se(2) molecules were present in a very small number. When polarised double zeta wave function (DZP) was used, the bond length of Se(2) was found to be 223.1 pm and the frequency is 367.4 cm(-1). Similarly for other clusters of selenium, we calculated the frequencies and compared with the experimental data. The experimental Raman spectra give 250 cm(-1) for a selenium glass. By comparing the experimental frequencies with those calculated we found that linear Se(3) was present in the glass. This indicates the possibility of linear growth in the glass.
引用
收藏
页码:281 / 283
页数:3
相关论文
共 50 条