Stock price prediction using deep learning and frequency decomposition

被引:167
|
作者
Rezaei, Hadi [1 ]
Faaljou, Hamidreza [1 ]
Mansourfar, Gholamreza [1 ]
机构
[1] Urmia Univ, Econ & Management Dept, Orumiyeh, West Azerbaijan, Iran
关键词
Stock price prediction; LSTM; CNN; Empirical mode decomposition (EMD); CEEMD; SUPPORT VECTOR REGRESSION; TIME-SERIES; MODEL;
D O I
10.1016/j.eswa.2020.114332
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nonlinearity and high volatility of financial time series have made it difficult to predict stock price. However, thanks to recent developments in deep learning and methods such as long short-term memory (LSTM) and convolutional neural network (CNN) models, significant improvements have been obtained in the analysis of this type of data. Further, empirical mode decomposition (EMD) and complete ensemble empirical mode decomposition (CEEMD) algorithms decomposing time series to different frequency spectra are among the methods that could be effective in analyzing financial time series. Based on these theoretical frameworks, we propose novel hybrid algorithms, i.e., CEEMD-CNN-LSTM and EMD-CNN-LSTM, which could extract deep features and time sequences, which are finally applied to one-step-ahead prediction. The concept of the suggested algorithm is that when combining these models, some collaboration is established between them that could enhance the analytical power of the model. The practical findings confirm this claim and indicate that CNN alongside LSTM and CEEMD or EMD could enhance the prediction accuracy and outperform other counterparts. Further, the suggested algorithm with CEEMD provides better performance compared to EMD.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Stock Closing Price Prediction using Machine Learning Techniques
    Vijh, Mehar
    Chandola, Deeksha
    Tikkiwal, Vinay Anand
    Kumar, Arun
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND DATA SCIENCE, 2020, 167 : 599 - 606
  • [42] Agricultural product price prediction based on signal decomposition and deep learning
    Wang R.
    Zhang X.
    Wang M.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2022, 38 (24): : 256 - 267
  • [43] Multi-decomposition in deep learning models for futures price prediction
    Song, Yuping
    Huang, Jiefei
    Xu, Yang
    Ruan, Jinrui
    Zhu, Min
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 246
  • [44] Short-term stock market price trend prediction using a comprehensive deep learning system
    Jingyi Shen
    M. Omair Shafiq
    Journal of Big Data, 7
  • [45] Short-term stock market price trend prediction using a comprehensive deep learning system
    Shen, Jingyi
    Shafiq, M. Omair
    JOURNAL OF BIG DATA, 2020, 7 (01)
  • [46] An optimal deep learning-based LSTM for stock price prediction using twitter sentiment analysis
    Swathi, T.
    Kasiviswanath, N.
    Rao, A. Ananda
    APPLIED INTELLIGENCE, 2022, 52 (12) : 13675 - 13688
  • [47] Deep Learning-based Integrated Framework for stock price movement prediction
    Zhao, Yanli
    Yang, Guang
    APPLIED SOFT COMPUTING, 2023, 133
  • [48] Stock Prediction using Deep Learning and Sentiment Analysis
    Xu, Yichuan
    Keselj, Vlado
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 5573 - 5580
  • [49] Stock Market Prediction Using a Deep Learning Approach
    Damrongsakmethee, Thitimanan
    Neagoe, Victor-Emil
    PROCEEDINGS OF THE 2020 12TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI-2020), 2020,
  • [50] Deep learning-based feature engineering for stock price movement prediction
    Long, Wen
    Lu, Zhichen
    Cui, Lingxiao
    KNOWLEDGE-BASED SYSTEMS, 2019, 164 : 163 - 173