Statistics of extinction and survival in Lotka-Volterra systems

被引:30
|
作者
Abramson, G
Zanette, DH
机构
[1] Comis Nacl Energia Atom, Ctr Atom Bariloche, RA-8400 Bariloche, Rio Negro, Argentina
[2] Int Ctr Theoret Phys, I-34100 Trieste, Italy
[3] Max Planck Gesell, Fritz Haber Inst, D-14195 Berlin, Germany
来源
PHYSICAL REVIEW E | 1998年 / 57卷 / 04期
关键词
D O I
10.1103/PhysRevE.57.4572
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We analyze purely competitive many-species Lotka-Volterra systems with random interaction matrices, focusing the attention on statistical properties of their asymptotic states. Generic features of the evolution are outlined from a semiquantitative analysis of the phase-space structure and extensive numerical simulations are performed to study the statistics of the extinctions. We find that the number of surviving species depends strongly on the statistical properties of the interaction matrix and that the probability of survival is weakly correlated to specific initial conditions.
引用
收藏
页码:4572 / 4577
页数:6
相关论文
共 50 条
  • [41] Stability of neutral Lotka-Volterra systems
    Yi, Z
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 199 (02) : 391 - 402
  • [42] Lotka-Volterra systems integrable in quadratures
    Bogoyavlenskij, Oleg
    Itoh, Yoshiaki
    Yukawa, Tetsuyuki
    JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (05)
  • [43] Chaos in perturbed Lotka-Volterra systems
    Christie, JR
    Gopalsamy, K
    Li, JB
    ANZIAM JOURNAL, 2001, 42 : 399 - 412
  • [44] DYNAMICS OF LOTKA-VOLTERRA SYSTEMS WITH EXPLOITATION
    DERRICK, W
    METZGAR, L
    JOURNAL OF THEORETICAL BIOLOGY, 1991, 153 (04) : 455 - 468
  • [45] A Counterexample to a Result on Lotka-Volterra Systems
    Llibre, Jaume
    ACTA APPLICANDAE MATHEMATICAE, 2016, 142 (01) : 123 - 125
  • [46] Permanence of Stochastic Lotka-Volterra Systems
    Liu, Meng
    Fan, Meng
    JOURNAL OF NONLINEAR SCIENCE, 2017, 27 (02) : 425 - 452
  • [47] On global stabilization of Lotka-Volterra systems
    Vega, VM
    Aeyels, D
    NONLINEAR CONTROL SYSTEMS 2001, VOLS 1-3, 2002, : 419 - 424
  • [48] On the first integrals of Lotka-Volterra systems
    Gonzalez-Gascon, F
    Salas, DP
    PHYSICS LETTERS A, 2000, 266 (4-6) : 336 - 340
  • [49] Analysis of a Class of Lotka-Volterra Systems
    Moza, G.
    Constantinescu, D.
    Efrem, R.
    Bucur, L.
    Constantinescu, R.
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (02)
  • [50] Nonautonomous Lotka-Volterra systems with delays
    Teng, ZD
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (02) : 538 - 561