Synopsis In recent years, the fields of evolutionary biomechanics and morphology have developed into a deeply quantitative and integrative science, resulting in a much richer understanding of how structural relationships shape macroevolutionary patterns. This issue highlights new research at the conceptual and experimental cutting edge, with a special focus on applying big data approaches to classic questions in form-function evolution. As this issue illustrates, new technologies and analytical tools are facilitating the integration of biomechanics, functional morphology, and phylogenetic comparative methods to catalyze a new, more integrative discipline. Although we are at the cusp of the big data generation of organismal biology, the field is nonetheless still data-limited. This data bottleneck is primarily due to the rate-limiting steps of digitizing specimens, recording and tracking organismal movements, and extracting patterns from massive datasets. Automation and machine-learning approaches hold great promise to help data generation keep pace with ideas. As a final and important note, almost all the research presented in this issue relied on specimens-totaling the tens of thousands-provided by museum collections. Without collection, curation, and conservation of museum specimens, the future of the field is much less bright.