Quench Dynamics of Collective Modes in Fractional Quantum Hall Bilayers

被引:20
|
作者
Liu, Zhao [1 ]
Balram, Ajit C. [2 ]
Papic, Zlatko [3 ]
Gromov, Andrey [4 ,5 ]
机构
[1] Zhejiang Univ, Zhejiang Inst Modern Phys, Hangzhou 310027, Peoples R China
[2] HBNI, Inst Math Sci, CIT Campus, Chennai 600113, Tamil Nadu, India
[3] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[4] Brown Univ, Brown Theoret Phys Ctr, 182 Hope St, Providence, RI 02912 USA
[5] Brown Univ, Dept Phys, 182 Hope St, Providence, RI 02912 USA
基金
英国工程与自然科学研究理事会; 中国国家自然科学基金;
关键词
COMPOSITE FERMIONS; EXCITATIONS; STATES; MAGNETOROTONS; FLUID; GAP;
D O I
10.1103/PhysRevLett.126.076604
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We introduce different types of quenches to probe the nonequilibrium dynamics and multiple collective modes of bilayer fractional quantum Hall states. We show that applying an electric field in one layer induces oscillations of a spin-1 degree of freedom, whose frequency matches the long-wavelength limit of the dipole mode. On the other hand, oscillations of the long-wavelength limit of the quadrupole mode, i.e., the spin-2 graviton, as well as the combination of two spin-1 states, can be activated by a sudden change of band mass anisotropy. We construct an effective field theory to describe the quench dynamics of these collective modes. In particular, we derive the dynamics for both the spin-2 and the spin-1 states and demonstrate their excellent agreement with numerics.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Observation of Neutral Modes In The Fractional Quantum Hall Effect Regime
    Bid, Aveek
    Ofek, N.
    Inoue, H.
    Heiblum, M.
    Kane, C. L.
    Umansky, V.
    Mahalu, D.
    PHYSICS OF SEMICONDUCTORS: 30TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, 2011, 1399
  • [32] Robust integer and fractional helical modes in the quantum Hall effect
    Ronen, Yuval
    Cohen, Yonatan
    Banitt, Daniel
    Heiblum, Moty
    Umansky, Vladimir
    NATURE PHYSICS, 2018, 14 (04) : 411 - +
  • [33] Identification of the fractional quantum Hall edge modes by density oscillations
    Jiang, Na
    Hu, Zi-Xiang
    PHYSICAL REVIEW B, 2016, 94 (12)
  • [34] Robust integer and fractional helical modes in the quantum Hall effect
    Yuval Ronen
    Yonatan Cohen
    Daniel Banitt
    Moty Heiblum
    Vladimir Umansky
    Nature Physics, 2018, 14 : 411 - 416
  • [35] Solvable models for neutral modes in fractional quantum Hall edges
    Heinrich, Chris
    Levin, Michael
    PHYSICAL REVIEW B, 2017, 95 (20)
  • [36] Nonequilibrated Counterpropagating Edge Modes in the Fractional Quantum Hall Regime
    Grivnin, Anna
    Inoue, Hiroyuki
    Ronen, Yuval
    Baum, Yuval
    Heiblum, Moty
    Umansky, Vladimir
    Mahalu, Diana
    PHYSICAL REVIEW LETTERS, 2014, 113 (26)
  • [37] Aharonov–Bohm interference of fractional quantum Hall edge modes
    J. Nakamura
    S. Fallahi
    H. Sahasrabudhe
    R. Rahman
    S. Liang
    G. C. Gardner
    M. J. Manfra
    Nature Physics, 2019, 15 : 563 - 569
  • [38] Fractional quantum Hall effects in bilayers in the presence of interlayer tunneling and charge imbalance
    Peterson, Michael R.
    Papic, Z.
    Das Sarma, S.
    PHYSICAL REVIEW B, 2010, 82 (23)
  • [39] Neutral collective excitation in fractional quantum Hall effect at Jain series
    Das, Debashis
    Indra, Moumita
    Majumder, Dwipesh
    SOLID STATE COMMUNICATIONS, 2017, 260 : 19 - 22
  • [40] Light scattering by magnetorotons of collective excitations in the fractional quantum Hall regime
    Kang, M
    Pinczuk, A
    Dujovne, I
    Dennis, BS
    Pfeiffer, LN
    West, KW
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2002, 12 (1-4): : 55 - 58