Automated Polyp Detection in Colonoscopy Videos Using Shape and Context Information

被引:476
|
作者
Tajbakhsh, Nima [1 ]
Gurudu, Suryakanth R. [2 ]
Liang, Jianming [1 ]
机构
[1] Arizona State Univ, Dept Biomed Informat, Scottsdale, AZ 85259 USA
[2] Mayo Clin, Div Gastroenterol & Hepatol, Scottsdale, AZ 85259 USA
关键词
Optical colonoscopy; polyp detection; boundary classification; edge voting; detection latency; COMPUTER-AIDED DETECTION; CT COLONOGRAPHY; MISS RATE; COLORECTAL-CANCER; TEXTURE FEATURES; CLASSIFICATION; CURVATURE;
D O I
10.1109/TMI.2015.2487997
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents the culmination of our research in designing a system for computer-aided detection (CAD) of polyps in colonoscopy videos. Our system is based on a hybrid context-shape approach, which utilizes context information to remove non-polyp structures and shape information to reliably localize polyps. Specifically, given a colonoscopy image, we first obtain a crude edge map. Second, we remove non-polyp edges from the edge map using our unique feature extraction and edge classification scheme. Third, we localize polyp candidates with probabilistic confidence scores in the refined edge maps using our novel voting scheme. The suggested CAD system has been tested using two public polyp databases, CVC-ColonDB, containing 300 colonoscopy images with a total of 300 polyp instances from 15 unique polyps, and ASU-Mayo database, which is our collection of colonoscopy videos containing 19,400 frames and a total of 5,200 polyp instances from 10 unique polyps. We have evaluated our system using free-response receiver operating characteristic (FROC) analysis. At 0.1 false positives per frame, our system achieves a sensitivity of 88.0% for CVC-ColonDB and a sensitivity of 48% for the ASU-Mayo database. In addition, we have evaluated our system using a new detection latency analysis where latency is defined as the time from the first appearance of a polyp in the colonoscopy video to the time of its first detection by our system. At 0.05 false positives per frame, our system yields a polyp detection latency of 0.3 seconds.
引用
收藏
页码:630 / 644
页数:15
相关论文
共 50 条
  • [41] Polyp detection at colonoscopy: Endoscopist and technical factors
    Rex, Douglas K.
    [J]. BEST PRACTICE & RESEARCH CLINICAL GASTROENTEROLOGY, 2017, 31 (04) : 425 - 433
  • [42] Lines of curvature for polyp detection in virtual colonoscopy
    Zhao, Lingxiao
    Botha, Charl P.
    Bescos, Javier O.
    Truyen, Roel
    Vos, Frans M.
    Post, Frits H.
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2006, 12 (05) : 885 - 892
  • [43] Detection of Variation Instances on Colonoscopy Videos using Structural Similarity Index
    Kacmaz, Rukiye Nur
    Yilmaz, Bulent
    [J]. 2018 MEDICAL TECHNOLOGIES NATIONAL CONGRESS (TIPTEKNO), 2018,
  • [44] COLONIC POLYP DETECTION - ROLE OF ROENTGENOGRAPHY AND COLONOSCOPY
    AMBERG, JR
    BERK, RN
    BURHENNE, HJ
    CLEMETT, AR
    DODDS, WJ
    FRIEDLAND, GW
    GOLDBERG, HI
    GOLDSTEIN, HM
    LAUFER, I
    LAWSON, TL
    MARGULIS, AR
    MARSHAK, RH
    MILLER, RE
    SHORT, WF
    STEWART, ET
    YOUKER, JE
    ZBORALSKE, FF
    [J]. RADIOLOGY, 1977, 125 (01) : 255 - 257
  • [45] Variation in polyp detection rates at screening colonoscopy
    Imperiale, Thomas F.
    Glowinski, Elizabeth A.
    Juliar, Beth E.
    Azzouz, Faouzi
    Ransohoff, David F.
    [J]. GASTROINTESTINAL ENDOSCOPY, 2009, 69 (07) : 1288 - 1295
  • [46] Massive Colonoscopy Images Oriented Polyp Detection
    Chen, Ming
    Du, Peng
    Zhang, Dong
    [J]. 2018 5TH INTERNATIONAL CONFERENCE ON BIOMEDICAL AND BIOINFORMATICS ENGINEERING (ICBBE 2018), 2018, : 95 - 99
  • [47] ARTIFICIAL INTELLIGENCE FOR REAL-TIME POLYP LOCALISATION IN COLONOSCOPY WITHDRAWAL VIDEOS
    Ahmad, Omer F.
    Brandao, Patrick
    Sami, Sarmed S.
    Mazomenos, Evangelos
    Rau, Anita
    Haidry, Rehan
    Vega, Roser
    Seward, Ed
    Vercauteren, Tom K.
    Stoyanov, Danail
    Lovat, Laurence
    [J]. GASTROINTESTINAL ENDOSCOPY, 2019, 89 (06) : AB647 - AB647
  • [48] Automated Polyp Detection Using Deep Learning: Leveling the Field
    Karnes, William E.
    Alkayali, Talal
    Mittal, Mohit
    Patel, Anish
    Kim, Junhee
    Chang, Kenneth J.
    Ninh, Andrew Q.
    Urban, Gregor
    Baldi, Pierre
    [J]. GASTROINTESTINAL ENDOSCOPY, 2017, 85 (05) : AB376 - AB377
  • [49] ARTIFICIAL INTELLIGENCE FOR REAL-TIME POLYP LOCALISATION IN COLONOSCOPY WITHDRAWAL VIDEOS
    Ahmad, Omer F.
    Brandao, Patrick
    Sami, Sarmed S.
    Mazomenos, Evangelos
    Rau, Anita
    Haidry, Rehan J.
    Vega, Roser
    Seward, Ed
    Vercauteren, Tom
    Stoyanov, Danail
    Lovat, Laurence B.
    [J]. GUT, 2019, 68 : A2 - A3
  • [50] Automatic Polyp Detection and Localization during Colonoscopy using Convolutional Neural Networks
    Bravo, Diego
    Ruano, Josue
    Gomez, Martin
    Romero, Eduardo
    [J]. MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS, 2020, 11314