Dimension drop of connected part of slicing self-affine sponges

被引:4
|
作者
Zhang, Yan-fang [1 ]
Xu, Yan-li [2 ]
机构
[1] Huzhou Univ, Sch Sci, Huzhou 313000, Peoples R China
[2] Cent China Normal Univ, Dept Math & Stat, Wuhan 430079, Peoples R China
关键词
Connectedness index; Slicing self-affine sponge; Lipschitz equivalence; HAUSDORFF DIMENSION; SETS;
D O I
10.1016/j.jmaa.2021.125903
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The connected part of a metric space E is defined to be the union of non-trivial connected components of E. We proved that for a class of self-affine sets called slicing self-affine sponges, the connected part of E either coincides with E , or is essentially contained in the attractor of a proper sub-IFS of an iteration of the original IFS. This generalizes an early result of Huang and Rao (2021) [9] on a class of self-similar sets called fractal cubes. Moreover, we show that the result is no longer valid if the slicing property is removed. Consequently, for a Baranski carpet E possessing trivial points, the Hausdorff dimension and the box dimension of the connected part of E are strictly less than that of E , respectively. For slicing self-affine sponges in R-d with d >= 3, whether the attractor of a sub-IFS has strictly smaller dimensions is an open problem. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Dimension of generic self-affine sets with holes
    Koivusalo, Henna
    Rams, Michal
    MONATSHEFTE FUR MATHEMATIK, 2019, 188 (03): : 527 - 546
  • [32] THE DIMENSION OF PROJECTIONS OF SELF-AFFINE SETS AND MEASURES
    Falconer, Kenneth
    Kempton, Tom
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2017, 42 (01) : 473 - 486
  • [33] On Some Dimension Problems for Self-Affine Fractals
    Bernardi, M. P.
    Bondioli, C.
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 1999, 18 (03): : 733 - 751
  • [34] Dimension Functions of Self-Affine Scaling Sets
    Fu, Xiaoye
    Gabardo, Jean-Pierre
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2013, 56 (04): : 745 - 758
  • [35] On the Hausdorff dimension of certain self-affine sets
    Abercrombie, AG
    Nair, R
    STUDIA MATHEMATICA, 2002, 152 (02) : 105 - 124
  • [36] The Hausdorff dimension of the projections of self-affine carpets
    Ferguson, Andrew
    Jordan, Thomas
    Shmerkin, Pablo
    FUNDAMENTA MATHEMATICAE, 2010, 209 (03) : 193 - 213
  • [37] Dimensions of random statistically self-affine Sierpinski sponges in Rk
    Barral, Julien
    Feng, De-Jun
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 149 : 254 - 303
  • [38] Dimensions of random self-affine multifractal Sierpinski sponges in Rd
    Olsen, L.
    AEQUATIONES MATHEMATICAE, 2013, 86 (1-2) : 23 - 56
  • [39] The Lq$L∧q$ spectrum of self-affine measures on sponges
    Kolossvary, Istvan
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2023, : 666 - 701
  • [40] A dimension formula for self-similar and self-affine fractals
    Huber, G
    Jensen, MH
    Sneppen, K
    FRACTALS-AN INTERDISCIPLINARY JOURNAL ON THE COMPLEX GEOMETRY OF NATURE, 1995, 3 (03): : 525 - 531