Predicting Output Performance of a Petascale Supercomputer

被引:18
|
作者
Xie, Bing [1 ]
Huang, Yezhou [1 ]
Chase, Jeffrey S. [1 ]
Choi, Jong Youl [2 ]
Klasky, Scott [2 ]
Lofstead, Jay [3 ]
Oral, Sarp [2 ]
机构
[1] Duke Univ, Durham, NC 27706 USA
[2] Oak Ridge Natl Lab, Oak Ridge, TN USA
[3] Sandia Natl Labs, Livermore, CA 94550 USA
关键词
Petascale supercomputer; Output performance; Linear regression; IO;
D O I
10.1145/3078597.3078614
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we develop a predictive model useful for output performance prediction of supercomputer file systems under production load. Our target environment is Titan-the 3rd fastest supercomputer in the world-and its Lustre-based multi-stage write path. We observe from Titan that although output performance is highly variable at small time scales, the mean performance is stable and consistent over typical application run times. Moreover, we find that output performance is non-linearly related to its correlated parameters due to interference and saturation on individual stages on the path. These observations enable us to build a predictive model of expected write times of output patterns and I/O configurations, using feature transformations to capture non-linear relationships. We identify the candidate features based on the structure of the Lustre/Titan write path, and use feature transformation functions to produce a model space with 135,000 candidate models. By searching for the minimal mean square error in this space we identify a good model and show that it is effective.
引用
下载
收藏
页码:181 / 192
页数:12
相关论文
共 50 条
  • [31] Improved artificial neural network method for predicting photovoltaic output performance
    Wang S.
    Zhang Y.
    Zhang C.
    Yang M.
    Global Energy Interconnection, 2020, 3 (06) : 553 - 561
  • [32] Improved artificial neural network method for predicting photovoltaic output performance
    Siyi Wang
    Yunpeng Zhang
    Chen Zhang
    Ming Yang
    Global Energy Interconnection, 2020, 3 (06) : 553 - 561
  • [33] Applying high-performance computing to petascale explosive simulations
    Peterson, Joseph R.
    Wight, Charles A.
    Berzins, Martin
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 2259 - 2268
  • [34] Parallel processing offers supercomputer performance on the desktop
    不详
    ELECTRONICS WORLD, 2007, 113 (1860): : 7 - 7
  • [35] Performance study of spike visual processing on a Supercomputer
    Montero-Gonzalez, R.
    Perez-Pena, F.
    Morgado-Estevez, A.
    Paz, R.
    Linares-Barranco, A.
    Rodriguez, M. A.
    Jimenez, G.
    PROCEEDINGS OF THE 2011 INTERNATIONAL SYMPOSIUM ON PERFORMANCE EVALUATION OF COMPUTER AND TELECOMMUNICATION SYSTEMS, 2011, : 167 - 173
  • [36] Report Indicates Slowdown in Supercomputer Performance Growth
    Garber, Lee
    COMPUTER, 2014, 47 (08) : 17 - 18
  • [37] Spark Deployment and Performance Evaluation on the MareNostrum Supercomputer
    Tous, Ruben
    Gounaris, Anastasios
    Tripiana, Carlos
    Torres, Jordi
    Girona, Sergi
    Ayguade, Eduard
    Labarta, Jesus
    Becerra, Yolanda
    Carrera, David
    Valero, Mateo
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 299 - 306
  • [38] I/O performance of the Santos Dumont supercomputer
    Bez, Jean Luca
    Carneiro, Andre Ramos
    Pavan, Pablo Jose
    Girelli, Valeria Soldera
    Boito, Francieli Zanon
    Fagundes, Bruno Alves
    Osthoff, Carla
    da Silva Dias, Pedro Leite
    Mehaut, Jean-Francois
    Navaux, Philippe O. A.
    INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING APPLICATIONS, 2020, 34 (02): : 227 - 245
  • [39] SOME OBSERVATIONS ON COMPUTER-PERFORMANCE CHARACTERIZATION - SUPERCOMPUTER AND MINI-SUPERCOMPUTER CLOCKS AND COMPILERS
    MIYA, EN
    PROCEEDINGS : WORKSHOP ON UNIX AND SUPERCOMPUTERS, 1988, : 51 - 65
  • [40] SUPERCOMPUTER PERFORMANCE EVALUATION: STATUS AND DIRECTIONS.
    Martin, Joanne L.
    Mueller-Wichards, Dieter
    Journal of Supercomputing, 1987, 1 (01): : 87 - 104