Hydrophilic poly-ether side-chained benzodithiophene-based homopolymer for solar cells and field-effect transistors

被引:7
|
作者
Liu, Qian [1 ,2 ]
Bao, Xichang [1 ]
Yan, Yan [3 ]
Du, Zhengkun [1 ]
Roy, V. A. L. [3 ]
Zhu, Dangqiang [1 ]
Sun, Mingliang [2 ,3 ,4 ]
Lee, Chun Sing [3 ]
Yang, Renqiang [1 ]
机构
[1] Chinese Acad Sci, Qingdao Inst Bioenergy & Bioproc Technol, CAS Key Lab Biobased Mat, Qingdao 266101, Shandong, Peoples R China
[2] Ocean Univ China, Inst Mat Sci & Engn, Qingdao 266100, Shandong, Peoples R China
[3] City Univ Hong Kong, Ctr Super Diamond & Adv Films COSDAF, Kowloon Tong, Hong Kong, Peoples R China
[4] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
POWER-CONVERSION EFFICIENCY; PHOTOVOLTAIC PERFORMANCE; ORGANIC PHOTOVOLTAICS; COPOLYMER; BANDGAP; ENHANCE;
D O I
10.1007/s10853-014-8789-8
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two benzodithiophene (BDT)-based homopolymers which have different mole ratios of poly-ether side chain substitute were synthesized by Stille coupling reaction. The polymers show decomposition temperature (T (d)) around 317 A degrees C and optical band gap around 2.2 eV. Solar cell devices with bulk heterojunction structure and field-effect transistors devices were fabricated to evaluate the photovoltaic properties of resultant polymers. Solar cell devices based on the polymer with 100 % poly-ether side chain (P1) show low power conversion efficiencies (PCEs) of 0.71 % resulting from the poor morphology of active layer which has rough surface and fairly large domain size due to the high aggregation tendency of P1:PCBM ([6,6]-phenyl-C61-butyric acid methyl ester) blend thin film as active layer in the structure of devices. Polymer with alternating poly-ether and alkoxy chained BDT (P2) and PCBM blend film shows smooth surface and appropriate domain size, which help to enhance the hole transportation and photovoltaic performances. The PCEs of the devices based on P2 reached 2.00 % which is a decent result for BDT-based homopolymer donor with relatively large band gap (ca. 2.2 eV). These two polymers exhibited mobilities of 3.95 x 10(-4) and 6.18 x 10(-4) cm(2)/Vs in field-effect transistors, respectively.
引用
收藏
页码:2263 / 2271
页数:9
相关论文
共 50 条
  • [41] Growth of pentacene crystallinity control layers for high mobility organic field-effect transistors based on benzodithiophene-dimer films
    Sakai, Tomoya
    Matsumoto, Y.
    Shibamoto, K.
    Osuga, H.
    Uno, K.
    Tanaka, Ichiro
    JOURNAL OF CRYSTAL GROWTH, 2013, 378 : 347 - 350
  • [42] DPP-based polymers with linear/branch side chain for organic field-effect transistors
    Zhang, Daohai
    Liang, Dongxu
    Gu, Liang
    Li, Jianhui
    Zhang, Haichang
    FRONTIERS IN CHEMISTRY, 2022, 10
  • [43] High Performance Polymer Field-Effect Transistors Based on Polythiophene Derivative with Conjugated Side Chain
    He, Youjun
    Wu, Weiping
    Liu, Yunqi
    Li, Yongfang
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2009, 47 (20) : 5304 - 5312
  • [44] Study on Intrinsic Stretchability of Diketopyrrolopyrrole-Based π-Conjugated Copolymers with Poly(acryl amide) Side Chains for Organic Field-Effect Transistors
    Lin, Yan-Cheng
    Chen, Chun-Kai
    Chiang, Yun-Chi
    Hung, Chih-Chien
    Fu, Mao-Chun
    Inagaki, Shin
    Chueh, Chu-Chen
    Higashihara, Tomoya
    Chen, Wen-Chang
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (29) : 33014 - 33027
  • [45] Recent progress in layered metal halide perovskites for solar cells, photodetectors, and field-effect transistors
    Liao, Chwen-Haw
    Mahmud, Md Arafat
    Ho-Baillie, Anita W. Y.
    NANOSCALE, 2023, 15 (09) : 4219 - 4235
  • [46] Porphyrin-dithienothiophene π-conjugated copolymers:: Synthesis and their applications in field-effect transistors and solar cells
    Huang, Xuebin
    Zhu, Chunli
    Zhang, Shiming
    Li, Weiwei
    Guo, Yunlong
    Zhan, Xiaowei
    Liu, Yunqi
    Bo, Zhishan
    MACROMOLECULES, 2008, 41 (19) : 6895 - 6902
  • [47] High performance amorphous metallated π-conjugated polymers for field-effect transistors and polymer solar cells
    Baek, Nam Seob
    Hau, Steven K.
    Yip, Hin-Lap
    Acton, Orb
    Chen, Kung-Shih
    Jen, Alex K. -Y.
    CHEMISTRY OF MATERIALS, 2008, 20 (18) : 5734 - 5736
  • [48] Comparing Halide Ligands in PbS Colloidal Quantum Dots for Field-Effect Transistors and Solar Cells
    Bederak, Dmytro
    Balazs, Daniel M.
    Sukharevska, Nataliia V.
    Shulga, Artem G.
    Abdu-Aguye, Mustapha
    Dirin, Dmitry N.
    Kovalenko, Maksym V.
    Loi, Maria A.
    ACS APPLIED NANO MATERIALS, 2018, 1 (12): : 6882 - 6889
  • [49] Pyridine-bridged diketopyrrolopyrrole conjugated polymers for field-effect transistors and polymer solar cells
    Zhang, Xiaotao
    Xiao, Chengyi
    Zhang, Andong
    Yang, Fangxu
    Dong, Huanli
    Wang, Zhaohui
    Zhan, Xiaowei
    Li, Weiwei
    Hu, Wenping
    POLYMER CHEMISTRY, 2015, 6 (26) : 4775 - 4783
  • [50] Polycyclic anthanthrene small molecules: semiconductors for organic field-effect transistors and solar cells applications
    Giguere, Jean-Benoit
    Sariciftci, Niyazi Serdar
    Morin, Jean-Francois
    JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (03) : 601 - 606