Deep Sequential Models for Suicidal Ideation From Multiple Source Data

被引:15
|
作者
Peis, Ignacio [1 ,2 ]
Olmos, Pablo M. [1 ,2 ]
Vera-Varela, Constanza [3 ]
Luisa Barrigon, Maria [3 ,4 ]
Courtet, Philippe [5 ]
Baca-Garcia, Enrique [3 ,4 ]
Artes-Rodriguez, Antonio [1 ,2 ,6 ]
机构
[1] Univ Carlos III Madrid, Dept Signal Theory & Commun, Madrid 28911, Spain
[2] Hlth Res Inst Gregorio Maranon, Madrid 28007, Spain
[3] IIS Jimenez Diaz Fdn, Dept Psychiat, Madrid 28040, Spain
[4] Univ Autonoma Madrid, Dept Psychiat, E-28049 Madrid, Spain
[5] Univ Montpellier, Lapeyronie Hosp, Dept Psychiat Emergency & Acute Care, F-34295 Montpellier, France
[6] ISCIII, CIBERSAM, Madrid 28029, Spain
关键词
Predictive models; Data models; Recurrent neural networks; Psychiatry; Informatics; Biological system modeling; Databases; Deep learning; RNN; attention; EMA; suicide; ECOLOGICAL MOMENTARY ASSESSMENT; BEHAVIOR; RISK;
D O I
10.1109/JBHI.2019.2919270
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper presents a novel method for predicting suicidal ideation from electronic health records (EHR) and ecological momentary assessment (EMA) data using deep sequential models. Both EHR longitudinal data and EMA question forms are defined by asynchronous, variable length, randomly sampled data sequences. In our method, we model each of them with a recurrent neural network, and both sequences are aligned by concatenating the hidden state of each of them using temporal marks. Furthermore, we incorporate attention schemes to improve performance in long sequences and time-independent pre-trained schemes to cope with very short sequences. Using a database of 1023 patients, our experimental results show that the addition of EMA records boosts the system recall to predict the suicidal ideation diagnosis from 48.13 obtained exclusively from EHR-based state-of-the-art methods to 67.78. Additionally, our method provides interpretability through the t-distributed stochastic neighbor embedding (t-SNE) representation of the latent space. Furthermore, the most relevant input features are identified and interpreted medically.
引用
收藏
页码:2286 / 2293
页数:8
相关论文
共 50 条
  • [31] Resting Brain Connectivity Differentiates Suicidal Ideation from Acute Suicidal Behavior
    Caceda, Ricardo
    Bush, Keith
    James, G. Andrew
    Stowe, Zachary
    Knight, Bettina
    Kilts, Clint
    BIOLOGICAL PSYCHIATRY, 2017, 81 (10) : S192 - S192
  • [32] Fatigue and Suicidal Ideation in People With Multiple Sclerosis: The Role of Social Support
    Mikula, Pavol
    Timkova, Vladimira
    Linkova, Marcela
    Vitkova, Marianna
    Szilasiova, Jarmila
    Nagyova, Iveta
    FRONTIERS IN PSYCHOLOGY, 2020, 11
  • [33] Predictors of suicidal ideation in patients feeling severely affected by multiple sclerosis
    Golla, H.
    Strupp, J.
    Ehmann, C.
    Galushko, M.
    Buecken, R.
    Hamacher, S.
    Pfaff, H.
    Voltz, R.
    EUROPEAN JOURNAL OF NEUROLOGY, 2015, 22 : 480 - 480
  • [34] PhD Forum: Deep Learning and Probabilistic Models Applied to Sequential Data
    Bejarano, Gissella
    2018 IEEE INTERNATIONAL CONFERENCE ON SMART COMPUTING (SMARTCOMP 2018), 2018, : 252 - 253
  • [35] The risk factors for suicidal ideation in a Romanian cohort of multiple sclerosis patients
    Maier, S.
    Balasa, R.
    Bajko, Z.
    Barcutean, L.
    Voidazan, S.
    Maier, A.
    Motataianu, A.
    Stirbu, N.
    MULTIPLE SCLEROSIS JOURNAL, 2016, 22 : 766 - 767
  • [36] The Main Determinants for Suicidal Ideation in a Romanian Cohort of Multiple Sclerosis Patients
    Romaniuc, Andreea
    Balasa, Rodica
    Stirbu, Nicoleta
    Maier, Smaranda
    Andone, Sebastian
    Bajko, Zoltan
    Barcutean, Laura
    Voidazan, Septimiu
    Motataianu, Anca
    BEHAVIOURAL NEUROLOGY, 2020, 2020
  • [37] A machine learning approach predicts future risk to suicidal ideation from social media data
    Roy, Arunima
    Nikolitch, Katerina
    McGinn, Rachel
    Jinah, Safiya
    Klement, William
    Kaminsky, Zachary A.
    NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [38] A machine learning approach predicts future risk to suicidal ideation from social media data
    Arunima Roy
    Katerina Nikolitch
    Rachel McGinn
    Safiya Jinah
    William Klement
    Zachary A. Kaminsky
    npj Digital Medicine, 3
  • [39] Factors on the Pathway from Trauma to Suicidal Ideation in Adolescents
    Kwon, Seo Young
    Name, Ji Ae
    Ko, Boo Sung
    Lee, Chang Wha
    Choi, Kyeong-Sook
    JOURNAL OF THE KOREAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY, 2019, 30 (01): : 26 - 33
  • [40] THE BURDEN OF SUICIDAL IDEATION IN EUROPE FROM THE PATIENT PERSPECTIVE
    Jaffe, D. H.
    Rive, B.
    Denee, T.
    VALUE IN HEALTH, 2018, 21 : S286 - S286