Remote Sensing-Based Quantification of the Relationships between Land Use Land Cover Changes and Surface Temperature over the Lower Himalayan Region

被引:81
|
作者
Ullah, Siddique [1 ]
Tahir, Adnan Ahmad [1 ]
Akbar, Tahir Ali [2 ]
Hassan, Quazi K. [3 ]
Dewan, Ashraf [4 ]
Khan, Asim Jahangir [1 ]
Khan, Mudassir [1 ]
机构
[1] COMSATS Univ Islamabad CUI, Dept Environm Sci, Abbottabad Campus, Abbottabad 22060, Pakistan
[2] COMSATS Univ Islamabad CUI, Dept Civil Engn, Abbottabad Campus, Abbottabad 22060, Pakistan
[3] Univ Calgary, Schulich Sch Engn, Dept Geomat Engn, 2500 Univ Dr NW, Calgary, AB T2N 1N4, Canada
[4] Curtin Univ, Sch Earth & Planetary Sci, Spatial Sci Discipline, Kent St, Bentley, WA 6102, Australia
关键词
artificial neural network; cellular automata; support vector machine; urban heat island; urban indices; URBAN HEAT-ISLAND; CLIMATE-CHANGE; ZHUJIANG DELTA; SATELLITE DATA; CLASSIFICATION; IMPACT; GIS; CITY; SIMULATION; PREDICTION;
D O I
10.3390/su11195492
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Population growth and population inflow from other regions has caused urbanization which altered land use land cover (LULC) in the lower Himalayan regions of Pakistan. This LULC change increased the land surface temperature (LST) in the region. LULC and LST changes were assessed for the period of 1990-2017 using Landsat data and the support vector machine (SVM) method. A combined cellular automata and artificial neural network (CA-ANN) prediction model was used for simulation of LULC changes for the period of 2032 and 2047 using transition potential matrix obtained from the data years of 2002 and 2017. The accuracy of the CA-ANN model was validated using simulated and classified images of 2017 with correctness value of 70% using validation modules in QGIS. The thermal bands of Landsat images from the years 1990, 2002 and 2017 were used for LST derivation. LST acquired for this period was then modeled for 2032 and 2047 using urban indices (UI) and linear regression analysis. The SVM land cover classification results showed a 5.75% and 4.22% increase in built-up area and bare soil respectively, while vegetation declined by 9.88% during 1990-2017. The results of LST for LULC classes showed that the built-up area had the highest mean LST as compared to other classes. The future projection of LULC and LST showed that the built-up area may increase by 12.48% and 14.65% in 2032 and 2047, respectively, of the total LULC area which was similar to 11% in 2017. Similarly, the area with temperature above 30 degrees C could be 44.01% and 58.02% in 2032 and 2047, respectively, of the total study area which was 18.64% in 2017. This study identified major challenges for urban planners to mitigate the urban heat island (UHI) phenomenon. In order to address the UHI in the study area, an urban planner might focus on urban plantation and decentralization of urban areas.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Remote Sensing Application for Exploring Changes in Land-Use and Land-Cover Over a District in Northern India
    Meer, Mohammad Suhail
    Mishra, Anoop Kumar
    [J]. JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2020, 48 (04) : 525 - 534
  • [42] Remote Sensing Application for Exploring Changes in Land-Use and Land-Cover Over a District in Northern India
    Mohammad Suhail Meer
    Anoop Kumar Mishra
    [J]. Journal of the Indian Society of Remote Sensing, 2020, 48 : 525 - 534
  • [43] Impact of of land use and land cover changes on temperature trends over India
    Nayak, Sridhara
    Mandal, Manabottam
    [J]. LAND USE POLICY, 2019, 89
  • [44] Land use and land cover changes in the Lower Neretva Region from 1990 to 2020
    Setka, Josip
    Kaufmann, Petra Radeljak
    Valozic, Luka
    [J]. HRVATSKI GEOGRAFSKI GLASNIK-CROATIAN GEOGRAPHICAL BULLETIN, 2021, 83 (02): : 7 - 31
  • [46] Effect of land use and land cover changes on land surface warming in an intensive agricultural region
    Rangel-Peraza, Jesús Gabriel
    Sanhouse-García, Antonio J.
    Flores-González, Lizbeth M.
    Monjardín-Armenta, Sergio A.
    Mora-Félix, Zuriel Dathan
    Rentería-Guevara, Sergio Arturo
    Bustos-Terrones, Yaneth A.
    [J]. Journal of Environmental Management, 2024, 371
  • [47] Characterizing the relationship between land use land cover change and land surface temperature
    Tran, Duy X.
    Pla, Filiberto
    Latorre-Carmona, Pedro
    Myint, Soe W.
    Gaetano, Mario
    Kieu, Hoan V.
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2017, 124 : 119 - 132
  • [48] Relationship between Land Surface Temperature and Land Use/Land Cover in Taiyuan, China
    Duan Ping
    Li Shuting
    [J]. FIFTH SYMPOSIUM ON NOVEL OPTOELECTRONIC DETECTION TECHNOLOGY AND APPLICATION, 2019, 11023
  • [49] The relationship between land surface temperature and land use/land cover in Guangzhou, China
    Sun, Qinqin
    Wu, Zhifeng
    Tan, Jianjun
    [J]. ENVIRONMENTAL EARTH SCIENCES, 2012, 65 (06) : 1687 - 1694
  • [50] The relationship between land surface temperature and land use/land cover in Guangzhou, China
    Qinqin Sun
    Zhifeng Wu
    Jianjun Tan
    [J]. Environmental Earth Sciences, 2012, 65 : 1687 - 1694