On Hardy and Caffarelli-Kohn-Nirenberg inequalities

被引:9
|
作者
Hoai-Minh Nguyen [1 ]
Squassina, Marco [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Dept Math, Stn 8, CH-1015 Lausanne, Switzerland
[2] Univ Cattolica Sacro Cuore, Dipartimento Matemat & Fis, Via Musei 41, I-25121 Brescia, Italy
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2019年 / 139卷 / 02期
关键词
WEIGHTED NORM INEQUALITIES; GAMMA-CONVERGENCE; SOBOLEV; CONNECTIONS; CONSTANT; BOURGAIN; FORMULA; BREZIS;
D O I
10.1007/s11854-025-0077-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish improved versions of the Hardy and Caffarelli-Kohn-Nirenberg inequalities by replacing the standard Dirichlet energy with some nonlocal nonconvex functionals which have been involved in estimates for the topological degree of continuous maps from a sphere into itself and characterizations of Sobolev spaces.
引用
收藏
页码:773 / 797
页数:25
相关论文
共 50 条
  • [11] Caffarelli-Kohn-Nirenberg identities, inequalities and their stabilities
    Cazacu, Cristian
    Flynn, Joshua
    Lam, Nguyen
    Lu, Guozhen
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2024, 182 : 253 - 284
  • [12] Anisotropic Caffarelli-Kohn-Nirenberg type inequalities
    Li, YanYan
    Yan, Xukai
    ADVANCES IN MATHEMATICS, 2023, 419
  • [13] Extended Caffarelli-Kohn-Nirenberg inequalities and superweights for Lp-weighted Hardy inequalities
    Ruzhansky, Michael
    Suragan, Durvudkhan
    Yessirkegenov, Nurgissa
    COMPTES RENDUS MATHEMATIQUE, 2017, 355 (06) : 694 - 698
  • [14] Some improved Caffarelli-Kohn-Nirenberg inequalities
    B. Abdellaoui
    E. Colorado
    I. Peral
    Calculus of Variations and Partial Differential Equations, 2005, 23 : 327 - 345
  • [15] On the Symmetry of Extremals for the Caffarelli-Kohn-Nirenberg Inequalities
    Dolbeault, Jean
    Esteban, Maria J.
    Loss, Michael
    Tarantello, Gabriella
    ADVANCED NONLINEAR STUDIES, 2009, 9 (04) : 713 - 726
  • [16] Generalized Hardy Type and Caffarelli-Kohn-Nirenberg Type Inequalities on Finsler Manifolds
    Wei, Shihshu Walter
    Wu, Bing Ye
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2020, 31 (13)
  • [17] Sharp weighted isoperimetric and Caffarelli-Kohn-Nirenberg inequalities
    Lam, Nguyen
    ADVANCES IN CALCULUS OF VARIATIONS, 2021, 14 (02) : 153 - 169
  • [18] Minimizers of Caffarelli-Kohn-Nirenberg Inequalities with the Singularity on the Boundary
    Chern, Jann-Long
    Lin, Chang-Shou
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2010, 197 (02) : 401 - 432
  • [19] SOME IMPROVEMENTS FOR A CLASS OF THE CAFFARELLI-KOHN-NIRENBERG INEQUALITIES
    Sano, Megumi
    Takahashi, Futoshi
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2018, 31 (1-2) : 57 - 74
  • [20] A scenario for symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities
    Dolbeault, J.
    Esteban, M. J.
    JOURNAL OF NUMERICAL MATHEMATICS, 2012, 20 (3-4) : 233 - 249