Spatially averaged quantum inequalities do not exist in four-dimensional spacetime

被引:29
|
作者
Ford, LH [1 ]
Helfer, AD
Roman, TA
机构
[1] Tufts Univ, Dept Phys & Astron, Inst Cosmol, Medford, MA 02155 USA
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[3] Cent Connecticut State Univ, Dept Phys & Earth Sci, New Britain, CT 06050 USA
来源
PHYSICAL REVIEW D | 2002年 / 66卷 / 12期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.66.124012
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct a particular class of quantum states for a massless, minimally coupled free scalar field which are of the form of a superposition of the vacuum and multimode two-particle states. These states can exhibit local negative energy densities. Furthermore, they can produce an arbitrarily large amount of negative energy in a given region of space at a fixed time. This class of states thus provides an explicit counterexample to the existence of a spatially averaged quantum inequality in four-dimensional spacetime.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Spatiotemporal linear instability analysis of collective neutrino flavor conversion in four-dimensional spacetime
    Morinaga, Taiki
    PHYSICAL REVIEW D, 2021, 103 (08)
  • [42] Can effective four-dimensional scalar theory be asymptotically free in a spacetime with extra dimensions?
    Kisselev, A., V
    Petrov, V. A.
    PHYSICAL REVIEW D, 2021, 103 (08)
  • [43] Spatially anisotropic four-dimensional gauge interactions, planar fermions, and magnetic catalysis
    Alexandre, J
    Farakos, K
    Koutsoumbas, G
    Mavromatos, NE
    PHYSICAL REVIEW D, 2001, 64 (12)
  • [44] On the structure of effective action in four-dimensional quantum dilaton supergravity
    Buchbinder, I. L.
    Petrov, A. Y.
    Classical and Quantum Gravity, 14 (01):
  • [45] A proper fixed functional for four-dimensional Quantum Einstein Gravity
    Demmel, Maximilian
    Saueressig, Frank
    Zanusso, Omar
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (08):
  • [46] Quantum mechanical four-dimensional non-polarizing beamsplitter
    Kryvobok, Artem
    Kathman, Alan D.
    QUANTUM STUDIES-MATHEMATICS AND FOUNDATIONS, 2022, 9 (01) : 55 - 70
  • [47] Quantum mechanical four-dimensional non-polarizing beamsplitter
    Artem Kryvobok
    Alan D. Kathman
    Quantum Studies: Mathematics and Foundations, 2022, 9 : 55 - 70
  • [48] Modular theory and the reconstruction of four-dimensional quantum field theories
    Kähler, R
    Wiesbrock, HW
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (01) : 74 - 86
  • [49] Quantum hardware simulating four-dimensional inelastic neutron scattering
    A. Chiesa
    F. Tacchino
    M. Grossi
    P. Santini
    I. Tavernelli
    D. Gerace
    S. Carretta
    Nature Physics, 2019, 15 : 455 - 459
  • [50] Four-dimensional BF theory as a topological quantum field theory
    Baez, JC
    LETTERS IN MATHEMATICAL PHYSICS, 1996, 38 (02) : 129 - 143