We construct a particular class of quantum states for a massless, minimally coupled free scalar field which are of the form of a superposition of the vacuum and multimode two-particle states. These states can exhibit local negative energy densities. Furthermore, they can produce an arbitrarily large amount of negative energy in a given region of space at a fixed time. This class of states thus provides an explicit counterexample to the existence of a spatially averaged quantum inequality in four-dimensional spacetime.