ULRICH ELEMENTS IN NORMAL SIMPLICIAL AFFINE SEMIGROUPS

被引:2
|
作者
Herzog, Jurgen [1 ]
Jafari, Raheleh [2 ,3 ]
Stamate, Dumitru, I [4 ]
机构
[1] Univ Duisburg Essen, Fak Math, Essen, Germany
[2] Kharazmi Univ, Mosaheb Inst Math, Tehran, Iran
[3] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
[4] Univ Bucharest, Fac Math & Comp Sci, Bucharest, Romania
关键词
almost Gorenstein ring; Ulrich element; affine semigroup ring; lattice points; GORENSTEIN RINGS;
D O I
10.2140/pjm.2020.309.353
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H subset of N-d be a normal affine semigroup, R = K[H] its semigroup ring over the field K and omega(R) its canonical module. The Ulrich elements for H are those h in H such that for the multiplication map by x(h) from R into omega(R), the cokernel is an Ulrich module. We say that the ring R is almost Gorenstein if Ulrich elements exist in H. For the class of slim semigroups that we introduce, we provide an algebraic criterion for testing the Ulrich property. When d = 2, all normal affine semigroups are slim. Here we have a simpler combinatorial description of the Ulrich property. We improve this result for testing the elements in H which are closest to zero. In particular, we give a simple arithmetic criterion for when is. (1, 1) an Ulrich element in H.
引用
收藏
页码:353 / 380
页数:28
相关论文
共 50 条
  • [31] VANISHING SIMPLICIAL VOLUME FOR CERTAIN AFFINE MANIFOLDS
    Bucher, Michelle
    Connell, Chris
    Lafont, Jean-Francois
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (03) : 1287 - 1294
  • [32] On the Gorenstein locus of simplicial affine semigroup rings
    Jafari, Raheleh
    Taherizadeh, Abdoljavad
    Yaghmaei, Marjan
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (09) : 4032 - 4039
  • [33] Endmember Purification With Affine Simplicial Cone Model
    Luo, Wenfei
    Gao, Lianru
    Hong, Danfeng
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [34] THE FITTING AND JORDAN STRUCTURE OF AFFINE SEMIGROUPS
    WINTER, DJ
    LECTURE NOTES IN MATHEMATICS, 1982, 933 : 214 - 239
  • [35] Affine infinitesimal generators of semigroups on the polydisk
    Chen, Ren-Yu
    Zhou, Ze-Hua
    SEMIGROUP FORUM, 2014, 88 (02) : 316 - 323
  • [36] Affine semigroups of maximal projective dimension
    Bhardwaj, Om Prakash
    Goel, Kriti
    Sengupta, Indranath
    COLLECTANEA MATHEMATICA, 2023, 74 (03) : 703 - 727
  • [37] Normality and covering properties of affine semigroups
    Bruns, W
    Gubeladze, J
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1999, 510 : 161 - 178
  • [38] The computation of factorization invariants for affine semigroups
    Garcia-Sanchez, Pedro A.
    O'Neill, Christopher
    Webb, Gautam
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2019, 18 (01)
  • [39] Compact noncontraction semigroups of affine operators
    Voynov, A. S.
    Protasov, V. Yu.
    SBORNIK MATHEMATICS, 2015, 206 (07) : 921 - 940
  • [40] Affine infinitesimal generators of semigroups on the polydisk
    Ren-Yu Chen
    Ze-Hua Zhou
    Semigroup Forum, 2014, 88 : 316 - 323