ULRICH ELEMENTS IN NORMAL SIMPLICIAL AFFINE SEMIGROUPS

被引:2
|
作者
Herzog, Jurgen [1 ]
Jafari, Raheleh [2 ,3 ]
Stamate, Dumitru, I [4 ]
机构
[1] Univ Duisburg Essen, Fak Math, Essen, Germany
[2] Kharazmi Univ, Mosaheb Inst Math, Tehran, Iran
[3] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
[4] Univ Bucharest, Fac Math & Comp Sci, Bucharest, Romania
关键词
almost Gorenstein ring; Ulrich element; affine semigroup ring; lattice points; GORENSTEIN RINGS;
D O I
10.2140/pjm.2020.309.353
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H subset of N-d be a normal affine semigroup, R = K[H] its semigroup ring over the field K and omega(R) its canonical module. The Ulrich elements for H are those h in H such that for the multiplication map by x(h) from R into omega(R), the cokernel is an Ulrich module. We say that the ring R is almost Gorenstein if Ulrich elements exist in H. For the class of slim semigroups that we introduce, we provide an algebraic criterion for testing the Ulrich property. When d = 2, all normal affine semigroups are slim. Here we have a simpler combinatorial description of the Ulrich property. We improve this result for testing the elements in H which are closest to zero. In particular, we give a simple arithmetic criterion for when is. (1, 1) an Ulrich element in H.
引用
收藏
页码:353 / 380
页数:28
相关论文
共 50 条