Modeling and Unsupervised Classification of Multivariate Hidden Markov Chains With Copulas

被引:18
|
作者
Brunel, N. J-B. [1 ,2 ]
Lapuyade-Lahorgue, Jerome [3 ]
Pieczynski, Wojciech [3 ]
机构
[1] ENSIIE, F-91025 Evry 1, France
[2] Univ Evry, F-91025 Evry 1, France
[3] Telecom SudParis, F-91000 Evry, France
关键词
Copulas; EM algorithm; hidden Markov chains; hidden Markov models; inference for margins; maximum likelihood; multivariate modeling; spherically invariant random vector (SIRV); statistical classification; MAXIMUM-LIKELIHOOD-ESTIMATION; K-DISTRIBUTION PARAMETERS; COVARIANCE-MATRIX; LOCATION; SIGNAL;
D O I
10.1109/TAC.2009.2034929
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Parametric modeling and estimation of non-Gaussian multidimensional probability density function is a difficult problem whose solution is required by many applications in signal and image processing. A lot of efforts have been devoted to escape the usual Gaussian assumption by developing perturbed Gaussian models such as Spherically Invariant Random Vectors (SIRVs). In this work, we introduce an alternative solution based on copulas that enables theoretically to represent any multivariate distribution. Estimation procedures are proposed for some mixtures of copula-based densities and are compared in the hidden Markov chain setting, in order to perform statistical unsupervised classification of signals or images. Useful copulas and SIRV for multivariate signal classification are particularly studied through experiments
引用
收藏
页码:338 / 349
页数:12
相关论文
共 50 条
  • [41] Unsupervised multiscale classification using wavelet-domain hidden Markov tree model
    Ye, Z
    Lu, CC
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 4188 - 4188
  • [42] Hidden hybrid Markov/semi-Markov chains
    Guédon, Y
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2005, 49 (03) : 663 - 688
  • [43] Approximate realization of hidden Markov chains
    Finesso, L
    Spreij, P
    [J]. PROCEEDINGS OF 2002 IEEE INFORMATION THEORY WORKSHOP, 2002, : 90 - 93
  • [44] Parameter estimation for hidden Markov chains
    Archer, GEB
    Titterington, DM
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2002, 108 (1-2) : 365 - 390
  • [45] A Hidden Markov Model-based fuzzy modeling of multivariate time series
    Li, Jinbo
    Pedrycz, Witold
    Wang, Xianmin
    Liu, Peng
    [J]. SOFT COMPUTING, 2023, 27 (02) : 837 - 854
  • [46] A Hidden Markov Model-based fuzzy modeling of multivariate time series
    Jinbo Li
    Witold Pedrycz
    Xianmin Wang
    Peng Liu
    [J]. Soft Computing, 2023, 27 : 837 - 854
  • [47] Graphical models for multivariate Markov chains
    Colombi, R.
    Giordano, S.
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2012, 107 : 90 - 103
  • [48] Estimation and inference in multivariate Markov chains
    Nicolau, Joo
    Riedlinger, Flavio Ivo
    [J]. STATISTICAL PAPERS, 2015, 56 (04) : 1163 - 1173
  • [49] DEPENDENCY IN MULTIVARIATE MARKOV-CHAINS
    FLOURNOY, N
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 1990, 127 : 85 - 106
  • [50] A New Model for Multivariate Markov Chains
    Nicolau, Joao
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2014, 41 (04) : 1124 - 1135