A Simple Benchmark Problem for the Numerical Methods of the Cahn-Hilliard Equation
被引:2
|
作者:
Li, Yibao
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
Li, Yibao
[1
]
论文数: 引用数:
h-index:
机构:
Lee, Chaeyoung
[2
]
Wang, Jian
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R ChinaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
Wang, Jian
[3
]
Yoon, Sungha
论文数: 0引用数: 0
h-index: 0
机构:
Korea Univ, Dept Math, Seoul 02841, South KoreaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
Yoon, Sungha
[2
]
Park, Jintae
论文数: 0引用数: 0
h-index: 0
机构:
Korea Univ, Dept Math, Seoul 02841, South KoreaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
Park, Jintae
[2
]
Kim, Junseok
论文数: 0引用数: 0
h-index: 0
机构:
Korea Univ, Dept Math, Seoul 02841, South KoreaXi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
Kim, Junseok
[2
]
机构:
[1] Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
[2] Korea Univ, Dept Math, Seoul 02841, South Korea
[3] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
We present a very simple benchmark problem for the numerical methods of the Cahn-Hilliard (CH) equation. For the benchmark problem, we consider a cosine function as the initial condition. The periodic sinusoidal profile satisfies both the homogeneous and periodic boundary conditions. The strength of the proposed problem is that it is simpler than the previous works. For the benchmark numerical solution of the CH equation, we use a fourth-order Runge-Kutta method (RK4) for the temporal integration and a centered finite difference scheme for the spatial differential operator. Using the proposed benchmark problem solution, we perform the convergence tests for an unconditionally gradient stable scheme via linear convex splitting proposed by Eyre and the Crank-Nicolson scheme. We obtain the expected convergence rates in time for the numerical schemes for the one-, two-, and three-dimensional CH equations.
机构:
Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USANew Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
Wei, Xiaoyu
Jiang, Shidong
论文数: 0引用数: 0
h-index: 0
机构:
New Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USANew Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
Jiang, Shidong
Klockner, Andreas
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Comp Sci, Urbana, IL 61801 USANew Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
Klockner, Andreas
Wang, Xiao-Ping
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Univ Sci & Technol, Dept Math, Kowloon, Clear Water Bay, Hong Kong, Peoples R ChinaNew Jersey Inst Technol, Dept Math Sci, Newark, NJ 07102 USA
机构:
Univ Paris Cite, Sorbonne Univ, Lab Jacques Louis Lions, CNRS,Inria, F-75005 Paris, FranceUniv Paris Cite, Sorbonne Univ, Lab Jacques Louis Lions, CNRS,Inria, F-75005 Paris, France
Elbar, Charles
Perthame, Benoit
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris Cite, Sorbonne Univ, Lab Jacques Louis Lions, CNRS,Inria, F-75005 Paris, FranceUniv Paris Cite, Sorbonne Univ, Lab Jacques Louis Lions, CNRS,Inria, F-75005 Paris, France
Perthame, Benoit
Skrzeczkowski, Jakub
论文数: 0引用数: 0
h-index: 0
机构:
Univ Warsaw, Fac Math Informat & Mech, Warsaw, PolandUniv Paris Cite, Sorbonne Univ, Lab Jacques Louis Lions, CNRS,Inria, F-75005 Paris, France
机构:
Univ La Rochelle, Lab Math Images & Applicat, EA 3165, F-17042 La Rochelle 1, FranceUniv La Rochelle, Lab Math Images & Applicat, EA 3165, F-17042 La Rochelle 1, France
Cherfils, Laurence
Petcu, Madalina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Poitiers, Lab Math & Applicat, CNRS, UMR 6086, F-86962 Futuroscope, FranceUniv La Rochelle, Lab Math Images & Applicat, EA 3165, F-17042 La Rochelle 1, France
Petcu, Madalina
Pierre, Morgan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Poitiers, Lab Math & Applicat, CNRS, UMR 6086, F-86962 Futuroscope, FranceUniv La Rochelle, Lab Math Images & Applicat, EA 3165, F-17042 La Rochelle 1, France